
http://www.cellml.org/public/specification/20030930/units.pdf 1

CellML Specification

Draft — 30 September 2003

5 Units

5.1 Introduction

One of the key features ensuring robustness and re-usability of CellML components and models is the
requirement that units be associated with all variables and numbers in a CellML document. This allows
components and models that declare variables with different units to be connected, as long as variables
that are mapped to one another have the same dimensions. For instance, it is possible to map a variable
declared with units of “pound/foot” to a variable declared with units of “kilogram/metre”, but not to a
variable declared with units of “mole/litre” or “kilogram-squared/metre”. The explicit declaration of units
also allows CellML processing software to check the consistency of each equation in a model.

5.2 Basic Structure

5.2.1 Dictionary of standard units

CellML provides a dictionary of standard units that may be used in variable declarations or attached to bare
numbers in mathematics. References to these units should make use of the actual name of the units, rather
than the standard abbreviation, thus avoiding confusion between units (e.g., metre) and prefixes (e.g., milli).
The full list of units that any CellML processing application is expected to recognise is given in Table 2. The
keywords in the table comprise the SI base units, the SI derived units with special names and symbols, and
some additional units commonly used in the types of biological models likely to be defined using CellML.

ampere farad katal lux pascal tesla
becquerel gram kelvin meter radian volt
candela gray kilogram metre second watt
celsius henry liter mole siemens weber
coulomb hertz litre newton sievert
dimensionless joule lumen ohm steradian

TABLE 2: The dictionary of units keywords that CellML processing applications are expected to recognise.
Base SI units are printed in bold text, derived SI units are printed in plain text, and additions to the standard

units defined purely for the convenience of model authors are italicised.

The SI base units are the foundation of the units system in CellML. The conversion of a variable’s value
between two sets of units involves the expansion of all units definitions to linear combinations of the SI
base units and user-defined base units (described in Section 5.2.3). The list of SI base and derived units is
taken from The International System of Units (SI)1, including the Year 2000 Supplement2. The American
spellings of meter and liter are taken from the NIST Guide for the Use of the International System of
UNITS (SI)3. The SI standard defines the mathematical relationships between the SI derived units and the SI

1http://www.bipm.fr/pdf/si-brochure.pdf
2http://www.bipm.fr/pdf/si-supplement2000.pdf
3http://physics.nist.gov/Pubs/SP811/contents.html

http://www.cellml.org/public/specification/20030930/units.pdf 2

base units. These relationships are given in the right hand column of Table 3 in the Year 2000 Supplement,
with the exception of celsius, which is related to kelvin as described in Section 2.1.1.5 of the SI
standard.

The CellML units dictionary includes four non-SI units definitions for the convenience of modellers:
dimensionless, gram, liter and litre. The only unfamiliar name on this list is dimensionless, which is used to
indicate that a number or variable has no units associated with it. The mathematical relationships between
gram and litre and the base SI units are given in Section 5.2.5.

5.2.2 User defined units

CellML also provides a facility whereby new units can be defined in terms of the units provided in the
dictionary. This functionality allows the definition of units which are expressed as a scaled version of other
units (as is the case for most imperial units), the definition of units which are made up of the product of
other units, and even the creation of units that require an offset, such as degrees Fahrenheit. This allows
model authors to work in whatever set of units they feel most comfortable, while still ensuring that their
models can be integrated with those of other authors using different units.

New units are defined or declared using the <units> element, which may be placed inside <model>,
<import>, and <component> elements. When a <units> element is placed inside the <model>
or <import> element, the units definition may be referenced from within any component in the model.
When a <units> element is placed inside a <component> element, the units definition may only be
referenced from within that component.

Each units element must define a name attribute, which is used to reference the units definition else-
where. The value of the name attribute on a <units> element defined in a <model> element or de-
clared in an <import> element must be unique across all <units> elements in the <model> and all
<import> elements. For <units> elements defined in a <component> element, the value of the name
attribute must be unique across all <units> elements in the <component> in which it is defined. If the
value of the name attribute of a <units> element defined inside a <component> element matches the
value of the name attribute on a <units> element defined inside the <model> or an <import> element,
then it will redefine the units, and all references to these units within the <component> element refer to
the new definition. Model authors must not redefine any of the standard units. Therefore, the value of the
name attribute must not equal one of the names from the standard units dictionary in Table 2.

A units declaration appearing directly inside an <import> element must also define a units ref
attribute, which is described in Section 94. A units definition appearing directly inside a <model> or
<component> element may also define a base units attribute, the associated behaviour of which
is discussed in Section 5.2.3, and may contain a set of <unit> elements that reference units from the
dictionary or some previously defined units.

A <unit> element must not contain any elements in the CellML namespace, but may have up to five
attributes. The units attribute is the only one that is required. It is used to set the base quantity for
the current <unit> element, and its value must correspond to a keyword from the standard CellML units
dictionary or to the value of the name attribute of a <units> element in the current component or model.

The definition of new units in terms of subunits may require the use of some combination of the optional
offset, prefix, exponent, and multiplier attributes.

A multiplier attribute can be used to pre-multiply the quantity to be converted by any real scale
factor. For instance, a multiplier of 0.45359237 is used to define a pound in terms of a kilogram. The
multiplier attribute has a default value of "1.0"

The offset attribute is used to represent the addition of a constant in the transformation between the
current units and the base units. This should only be necessary for the definition of temperature scales. For

4http://www.cellml.org/public/specification/20030930/cellml specification.html#sec import model

http://www.cellml.org/public/specification/20030930/units.pdf 3

instance, an offset attribute value of "32.0" is needed to define Fahrenheit in terms of Celsius. The
offset attribute has a default value of "0.0".

The prefix attribute can be used to indicate a scale for the referenced units. It is included primarily
for the convenience of modellers who want to define units that differ from another units definition only by
an SI scale factor. Its value must be from the standard set of CellML prefix names given in Table 3 or be an
integer, in which case the units are pre-multiplied by 10 to the power of this number. The default value of
the prefix attribute is "0" (the referenced units are scaled by a factor of one).

name factor name factor

yotta 1024 deci 10−1

zetta 1021 centi 10−2

exa 1018 milli 10−3

peta 1015 micro 10−6

tera 1012 nano 10−9

giga 109 pico 10−12

mega 106 femto 10−15

kilo 103 atto 10−18

hecto 102 zepto 10−21

deka 101 yocto 10−24

TABLE 3: The set of names that may be used in the prefix attribute on a <unit> element and the corre-
sponding scale factors that will pre-multiply the unit.

The scale factor described by the prefix attribute and the units referenced by the units attribute
are raised to a power equal to the value of the exponent attribute. The value of the exponent attribute
must be a floating point number, and is typically an integer. The exponent attribute has a default value of
"1.0". Note that an exponent attribute value of "0.0" has the effect of removing the parent <unit>
element from the current units definition.

A simple units definition occurs when units are defined as a linear function of some previously defined
simple units or base units. In a simple units definition, a <units> element contains only a single child
<unit> element, that <unit> element has an exponent attribute value of "1.0", and the units defini-
tion referenced by the units attribute is one of the SI or user-defined base units or is itself a simple units
definition. These are the only conditions under which a <unit> element may define an offset attribute
with a value other than "0.0". The formula that expresses how the old units (referenced by the value of
the units attribute on the <unit> element) are transformed into the new units (defined by the value of
the name attribute on the parent <units> element) is given below.

xnew [Units] = (multiplier prefix)

[

Units
units

]

xold [units] + offset [Units] (3)

Terms in square brackets represent the units associated with values in the expression, which are itali-
cised. xold is the value to be transformed from the old units, and xnew is the resulting value in the new units.
Units are the units being defined, and multiplier, prefix, units and offset correspond to the values of
the appropriate attributes on the <unit> element.

Complex units are the product of multiple units. In a complex units definition, a <units> element
contains more than one <unit> element or a <unit> element that defines an exponent attribute with
a value other than "1.0". The conversion between the new units and the product of the constituent units is
given by the formula below.

http://www.cellml.org/public/specification/20030930/units.pdf 4

xnew [Units] = (m1 . . . mn p1
e1 . . . pn

en)

[

Units
u1

e1 . . . un
en

]

xold [u1
e1 . . . un

en] (4)

The mi, pi, ui, and ei terms refer to the values of the multiplier, prefix, units and exponent
attributes on the i-th <unit> element respectively.

An offset attribute may not be defined on any <unit> elements that occur inside a complex units
definition. When a complex units definition references a simple units definition, any offset associated
with the simple units definition is removed. This means that conversions such as the one between degrees
Fahrenheit per inch and degrees Celsius per centimetre involve only a scale factor.

5.2.3 New base units

A modeller might want to define and use units for which no simple conversion to SI units exist. A good
example of this is pH, which is dimensionless, but uses a log scale. Ideally, pH should not simply be defined
as dimensionless because software might then attempt to map variables defined with units of pH to any other
dimensionless variables.

CellML addresses this by allowing the model author to indicate that a units definition is a new type
of base unit, the definition of which cannot be resolved into simpler subunits. This is done by defining a
base units attribute value of "yes" on the <units> element. This element must then be left empty.
The base units attribute is optional and has a default value of "no". If the base units attribute is
omitted or assigned a value of "no", units are expected to be defined in terms of other units as described
in Section 5.2.2.

The indiscriminate use of the base units attribute is strongly discouraged, because it has a significant
impact on the re-usability of models and components. In particular, the base units attribute should not
be used to restrict users to creating models with an application-specific dictionary of units, as this prevents
the efficient exchange of CellML models with other applications.

Software that is checking the consistency of the units in an equation (described in more detail in Sec-
tion 5.2.7) can stop the recursive resolution of units definitions when the only remaining units are base SI
units and user-defined base units.

5.2.4 Expansion of units definitions

For interoperability, software that claims to perform units conversion when passing variables between com-
ponents and/or claims to perform dimension consistency checking of equations should obtain results that
are equivalent to those produced using the algorithms described in Appendix C.3.55 and Appendix C.3.66,
respectively. Both of these algorithms make use of the algorithm defined in Appendix C.3.47 to fully expand
units definitions into functions of the SI and user-defined base units.

For both simple and complex units definitions (as defined by Equation (3) and Equation (4), respec-
tively), the algorithm recursively substitutes in equations expanding the unknown term xold, stopping when
the unknown term has only SI or user-defined base units.

Although this specification does not require software to implement this algorithm exactly, it is used
extensively to demonstrate units conversion and dimension checking as described in Section 5.2.6 and
Section 5.2.7, respectively. Appendix C.4.28 provides examples of units definition expansion according to
the algorithm described in Appendix C.3.49.

5http://www.cellml.org/public/specification/20030930/cellml specification.html#sec units rules conversion between units definitions
6http://www.cellml.org/public/specification/20030930/cellml specification.html#sec units rules equation dimension checking
7http://www.cellml.org/public/specification/20030930/cellml specification.html#sec units rules units definition expansion
8http://www.cellml.org/public/specification/20030930/cellml specification.html#sec units examples expansion
9http://www.cellml.org/public/specification/20030930/cellml specification.html#sec units rules units definition expansion

http://www.cellml.org/public/specification/20030930/units.pdf 5

5.2.5 Expansion of the non-SI units definitions in the CellML dictionary

Having defined a mathematical notation in Section 5.2.2 and a technique for the expansion of units defi-
nitions, it is now possible to formally specify how the definitions of the non-SI units in Table 2 should be
expanded. The CellML versions of these units definitions and the associated equations are given below.
The definition of liter is identical to the definition of litre. As described in Section 5.2, dimensionless is not
related to the SI units and cannot be expanded.

<units name="gram">
<unit multiplier="0.001" units="kilogram" />

</units>

xnew [gram] = 0.001

[

gram
kilogram

]

xold [kilogram] (5)

<units name="litre">
<unit multiplier="1000" prefix="centi" units="metre" exponent="3" />

</units>

xnew [litre] =
(

1000
(

10−2
)3

)

[

litre
metre3

]

xold

[

metre3
]

= 0.001

[

litre
metre3

]

xold

[

metre3
]

(6)

5.2.6 Conversion between units definitions

Associating units definitions with every variable declaration in a component allows variables from compo-
nents that make use of different sets of units to be mapped together, as long as the variables have the same
dimensions. Appendix C.3.510 specifies a possible method for converting a numeric value from one set
of units to another. CellML processing software is not required to be capable of converting between units
definitions. However, for interoperability, software that does implement this functionality should achieve
the same results as if this method were used, although the exact implementation may differ.

This implementation generates an expression that relates each units definition to SI and user-defined base
units. This expression is obtained by recursively expanding each units definition as described in Appendix
C.3.411, and then simplifying the result. The expression for the input units is then inverted to give an
expression that relates the appropriate base units to the input units. This inverted expression is substituted
into the expression for the target units, producing a single expression that relates the quantity to be converted
from the input units to a corresponding quantity in the target units. The inversion and substitution process
is demonstrated by example in Appendix C.4.312 .

5.2.7 Equation dimension checking

The association of units with every variable and bare number that appears in an equation in a CellML
document provides CellML processing software the opportunity to perform equation dimension checking.
Verifying that equations have consistent dimensions can potentially catch many basic mathematical errors.

10http://www.cellml.org/public/specification/20030930/cellml specification.html#sec units rules conversion between units definitions
11http://www.cellml.org/public/specification/20030930/cellml specification.html#sec units rules units definition expansion
12http://www.cellml.org/public/specification/20030930/cellml specification.html#sec units examples conversion of units definitions

http://www.cellml.org/public/specification/20030930/units.pdf 6

Appendix C.3.613 specifies a possible implementation of equation dimension checking. This implemen-
tation splits an equation into a tree of equation parts, in which each parent part is obtained by the application
of a single operator to its children. The units definition on each leaf node (i.e., part without children) is ex-
panded into base units, as described in Appendix C.3.414. The units definition for a node at a higher level
of the tree is constructed by combining the units definitions of its children. An equation has consistent
dimensions if no errors are found while traversing the tree and if the fully expanded units definitions of the
two nodes at the top level of the tree are equivalent, as defined in Appendix C.2.215 .

CellML processing software is free to ignore units in mathematics and assume that equations are con-
sistent. For interoperability, software that performs equation dimension checking should achieve the same
results as if the implementation discussed in Appendix C.3.616 were used, although the exact implementa-
tion may differ.

This specification does not attempt to completely prevent model authors from creating invalid mathe-
matics. Dimension consistency checking prevents modellers from adding variables with different dimen-
sions but would not find errors in Equation (7) and Equation (8), which have different units but the same
dimensions:

x [volt] = y [volt] + z [millivolt] (7)

x [inch] = y [metre] + z [nautical mile] (8)

Although it would be technically possible (and useful) to find and correct such errors, CellML processing
software is not required to be able to do so.

5.3 Examples

5.3.1 User-defined units and new base units

Figure 7 demonstrates how users can extend the set of units in the CellML dictionary by defining new sets
of units.

5.3.2 Advanced examples

Examples of the expansions of units definitions, conversion between units definitions and equation dimen-
sion checking are given in Appendix C.417.

5.4 Rules for CellML Documents

Units are a fundamental part of a CellML model definition. In this section, formal rules are specified for the
system of units definition introduced in Section 5.2.

5.4.1 The <units> element

1. Allowed use of the <units> element

• The <model>, <import> and <component> elements may contain any number of <units>
elements.

13http://www.cellml.org/public/specification/20030930/cellml specification.html#sec units rules equation dimension checking
14http://www.cellml.org/public/specification/20030930/cellml specification.html#sec units rules units definition expansion
15http://www.cellml.org/public/specification/20030930/cellml specification.html#sec units rules dimension equivalence
16http://www.cellml.org/public/specification/20030930/cellml specification.html#sec units rules equation dimension checking
17http://www.cellml.org/public/specification/20030930/cellml specification.html#sec adv units examples

http://www.cellml.org/public/specification/20030930/units.pdf 7

<!-- User-defined Base Units -->
<units name="pH" base_units="yes" />

<!-- Simple Units Definitions -->
<units name="inch">

<unit multiplier="2.54" prefix="centi" units="metre" />
</units>

<units name="fahrenheit">
<unit multiplier="1.8" units="celsius" offset="32.0" />

</units>

<!-- Complex Units Definitions -->
<units name="celsius_per_centimetre">

<unit units="celsius" />
<unit prefix="centi" units="metre" exponent="-1" />

</units>

<units name="fahrenheit_per_inch">
<unit units="fahrenheit" />
<unit units="inch" exponent="-1" />

</units>

<units name="pH_per_celsius">
<unit units="pH" />
<unit units="celsius" exponent="-1" />

</units>

FIGURE 7: Some examples of the use of the <units> element demonstrating the definition of simple and
complex units.

http://www.cellml.org/public/specification/20030930/units.pdf 8

• Each <units> element must define a name attribute.

• Each <units> element appearing as the child of a <model> or <component> element may
also define a base units attribute.

[Units declared in an <import> element are not new definitions, and therefore can’t be defined
as base units.]

• If a <units> element appearing as the child of a <model> or <component> element defines
a base units attribute with a value of "yes", then that <units> element must contain only
the following elements, which may appear in any order:

– <RDF> elements in the RDF namespace.

• If a <units> element appearing as the child of a <model> or <component> element does
not define a base units attribute with a value of "yes", then that <units> element must
contain only the following elements, which may appear in any order:

– <unit> elements in the CellML namespace,
– <RDF> elements in the RDF namespace.

• Each <units> element appearing as the child of an <import> element must also define a
units ref attribute.

• A <units> element appearing as the child of an <import> element must contain only the
following elements, which may appear in any order:

– <RDF> elements in the RDF namespace.

2. Allowed values of the name attribute

• The value of the name attribute must be a valid CellML identifier as discussed in Section 2.2.118 .

• The value of the name attribute must not equal one of the names defined in the standard dictio-
nary of units in Table 2.

[Model authors may not redefine the standard units.]

• For units defined in a <model> element or declared in an <import> element, the value of
the name attribute must be unique across all <units> elements within the <model> and all
<import> elements. For units defined in a <component> element, the value of the name
attribute must be unique within the given <component> element.

[Two <units> elements in the <model> and <import> elements may not have the same
name attribute value, although a <units> element in a <component> element may share the
same name as a <units> element in the <model> element or <import> elements. In this
case, the units definition in the <component> element supersedes the model-wide definition
when referenced inside that component.]

3. Allowed values of the base units attribute

• If present, the value of the base units attribute must be "yes" or "no".

• If not present, the value of the base units attribute defaults to "no".

4. Proper use of the base units attribute

• A base units attribute must not be defined on a <units> element appearing as a child of
an <import> element.

18http://www.cellml.org/public/specification/20030930/cellml specification.html#sec fundamentals identifiers

http://www.cellml.org/public/specification/20030930/units.pdf 9

5.4.2 The <unit> element

1. Allowed values of the units ref attribute

• The value of the units ref attribute must equal the value of the name attribute of a <units>
element defined in the model at the URI given on the parent <import> element.

2. Proper use of the units ref attribute

• A units ref attribute must not be defined on a <units> element appearing as a child of a
<model> element or a <component> element.

[A units ref attribute would have no meaning on a units definition.]

5.4.3 The <unit> element

1. Allowed use of the <unit> element

• A <unit> element must contain only the following elements:

– <RDF> elements in the RDF namespace.

• Each <unit> element must define a units attribute. It may also define prefix, exponent,
multiplier, and offset attributes.

2. Allowed values of the units attribute

• The value of the units attribute must be taken from the standard dictionary of units listed in
Table 2 or be the value of the name attribute on a <units> element defined in the current
<component> or <model> element.

• The value of the units attribute must not reference a units definition that contains <unit>
elements that in turn directly or indirectly reference the current units definition.

[This rule prevents circular units definitions. It must be possible to break down a complex units
definition into SI and user-defined base units.]

3. Allowed values of the prefix attribute

• If present, the value of the prefix attribute must be an integer or a name taken from one of the
name columns of Table 3.

[The unit is scaled by 10 raised to the power of the specified integer or the factor correspond-
ing to the specified name. Therefore, prefix attribute values of "centi" and "-2" are
equivalent.]

• If not present, the value of the prefix attribute defaults to "0".

4. Allowed values of the exponent attribute

• If present, the value of the exponent attribute must be a real number.

• If not present, the value of the exponent attribute defaults to "1.0".

5. Allowed values of the multiplier attribute

• If present, the value of the multiplier attribute must be a real number.

• If not present, the value of the multiplier attribute defaults to "1.0".

http://www.cellml.org/public/specification/20030930/units.pdf 10

6. Allowed values of the offset attribute

• If present, the value of the offset attribute must be a real number.

• If not present, the value of the offset attribute defaults to "0.0".

7. Proper use of the offset attribute

• A <units> element containing a <unit> element that defines an offset attribute with a
value other than "0.0" must not contain other <unit> elements.

[The offset attribute can only be used in a simple units definition, as defined in Section 5.2.2.]

• A <unit> element that defines an offset attribute with a value other than "0.0" must not
define an exponent attribute with a value other than "1.0".

[The offset attribute can only be used in a simple units definition, as defined in Section 5.2.2.]

5.5 Rules for Processor Behaviour

5.5.1 Resolving references to units definitions

The <units> element may be placed inside <model>, <import>, and <component> elements. When
user-defined units are referenced by a variable or number declaration inside a component, the units definition
is first looked for inside the current <component> element. If a matching units definition cannot be found,
then the units definition is looked for in the <model> element and <import> elements.

5.5.2 Units associated with the MathML constants elements

This section defines the units associated with the MathML elements that appear in the constants subset of
the CellML set defined in Section 4.2.319. These elements represent numerical values. Operators can be
applied to combinations of these elements, variables and numbers in an equation. Units must be associated
with these elements to allow for equation dimension checking.

The <true> and <false> elements have units of cellml:boolean, where cellml:boolean
is a set of base units defined purely for use in this specification. (Note that users may not define their
own cellml:boolean units, as this is not a valid CellML identifier.) cellml:boolean units are not
associated with variables or numbers, but can be produced as the result of the application of relational or
logical operators, as discussed in Appendix C.3.320.

The <notanumber>,<pi>, <infinity> and <exponentiale> elements all have units of dimen-
sionless.

E-mail questions, criticism, submissions or info to info@cellml.org
Input document last modified : Tue Sep 30 14:43:07 NZST 2003

19http://www.cellml.org/public/specification/20030930/cellml specification.html#sec math cellml subset
20http://www.cellml.org/public/specification/20030930/cellml specification.html#sec units rules applying operators to units definitions

