
http://www.cellml.org/public/specification/20021106/model structure.pdf 1

CellML Specification 1.1
Draft — 6 November 2002

3 Model Structure

3.1 Introduction

Any model can be described as a network of connections between self-contained components. A compo-
nent is a functional unit that may correspond to a physical compartment, event, or species or may be just a
convenient modelling abstraction. A component contains variables and mathematical relationships that ma-
nipulate those variables. Connections exchange information between components. A connection contains
mappings between variables in two components, allowing the value of a variable in one component to be
passed to a variable in the other component.

3.2 Basic Structure

3.2.1 Definition of a model

A model is declared in CellML with a <model> element. This is the usual root element for a CellML
document. The recommended best practice for specifying namespaces in a CellML document is described
in Section 2.2.31.

The <model> element has a name attribute that allows this model to be unambiguously referenced. A
<model> element may contain any number of the elements in the following list in any order. However,
the recommended best practice is for elements placed within the <model> element to appear in the order
given in the following list. This allows people to quickly find certain kinds of information within a CellML
document.

• <import model> — A modeller may import another valid CellML model, as described in Section
92.

• <units> — A modeller can declare a set of units to use in the model, as described in Section 53 .

• <component> — Components are the smallest functional units in a model. Each component may
contain variables that represent the key properties of the component and/or mathematics that describe
the behaviour of the portion of the system represented by that component.

• <group> — Groups allow the modeller to define logical and physical relationships between com-
ponents. Groups are defined using the <group> element, as discussed in Section 64 .

• <connection> — Connections are used to connect components to each other and to map vari-
ables in one component to variables in another. Connections are defined using the <connection>
element, as discussed in Section 3.2.4.

The <model> element (and indeed any of the elements in a CellML document) may define metadata
to provide context for that object. This metadata might include documentation, citations from literature, or
a modification history for the current CellML object. Adding metadata to a CellML document is discussed
in detail in Section 85.

1http://www.cellml.org/public/specification/20021106/cellml specification.html#sec fundamentals extending cellml
2http://www.cellml.org/public/specification/20021106/cellml specification.html#sec import model
3http://www.cellml.org/public/specification/20021106/cellml specification.html#sec units
4http://www.cellml.org/public/specification/20021106/cellml specification.html#sec grouping
5http://www.cellml.org/public/specification/20021106/cellml specification.html#sec metadata

http://www.cellml.org/public/specification/20021106/model structure.pdf 2

3.2.2 Definition of components

A model can be constructed from multiple components. However, recommended best practice is to assign
just one component to a model and connect all component-models in a supermodel. Creating a network of
models encourages the re-use of components. For instance, an electrophysiological supermodel of a cell
might be organised into component-models that represent various ion channels. All of the mathematics that
describe the behaviour of the L-type calcium channel would be defined in a single component representing
this particular ion channel. If a modeller wished to re-use the portion of the model representing the L-type
calcium channel in another model, he or she would only need to import this component-model into a second
supermodel. See Section 96 for more information on the import feature.

A <component> element is used to declare a CellML component. It must only be used inside a
<model> element.

A CellML <model> may contain any number of <component> elements. Each <component>
must have a name attribute, the value of which is a unique identifier for the component amongst all other
components within the current model. The value of the name attribute is used to reference the component
in other parts of the model, such as in connections and groups.

A <component> may contain any of the elements in the following list in any order. Again, recom-
mended best practice is for elements placed within the <component> element to appear in the order given
in the following list.

• <units> — A modeller can declare a set of units to use within the component, as described in
Section 57.

• <variable> — A component may contain any number of <variable> elements, which define
variables that may be mathematically related in the equation blocks contained in the component.
Variables are discussed in Section 3.2.3.

• <reaction> — A component may contain <reaction> elements, which are used to provide
chemical and biochemical context for the equations describing a reaction. It is recommended that
only one <reaction> element appear in any <component> element. The definition of reaction
information is described in Section 78.

• <mathml:math> — A component may contain a set of mathematical relationships between the
variables declared in this component. These equations are marked up using MathML, as discussed
in Section 49. The mathml prefix is used to indicate that the <math> element is in the MathML
namespace.

A <component> element is also a sensible place to define metadata, using the syntax presented in
Section 810.

The definitions of two <component> elements are included in the example described in Section 3.3.

3.2.3 Definition of variables

Models are usually developed to investigate the behaviour of a number of variables that have biological
significance. Each variable in the model belongs to a single component, which may contain equations that
modify the value of that variable. The value of a variable may be passed through connections into other
components. The variable must also be declared in these components, which can then use the value of the
variable in their own equations but must not modify it.

6http://www.cellml.org/public/specification/20021106/cellml specification.html#sec import model
7http://www.cellml.org/public/specification/20021106/cellml specification.html#sec units
8http://www.cellml.org/public/specification/20021106/cellml specification.html#sec reactions
9http://www.cellml.org/public/specification/20021106/cellml specification.html#sec mathematics

10http://www.cellml.org/public/specification/20021106/cellml specification.html#sec metadata

http://www.cellml.org/public/specification/20021106/model structure.pdf 3

The <variable> element is used to declare a CellML variable. It can only be used inside a <component>
element. Variables must define a name attribute, the value of which must be unique across all variables in
the current component. The name of a variable is used when referencing variables inside connections (see
Section 3.2.4) and reactions (see Section 711). All variables must also define a units attribute. The value
of this attribute must correspond to one of the keywords in the CellML units dictionary or a user-defined
unit, as described in Section 512. Variables may define a units model attribute to instruct the processor
where to find the user-defined units. If a units model attribute is not specified, the value of the units
attribute must equal the value of the name attribute of a <units> element defined within the current
component or model. The units model attribute is further discussed in Section 913 .

A <variable> element may also have the following attributes:

• initial value — This attribute provides a convenient means for specifying the value of a scalar
real variable when all independent variables in the model have a value of 0.0. Independent variables
are those with respect to which another variable is differentiated or integrated.

• public interface — This attribute specifies the interface exposed to components in the parent
and sibling sets (see below). The public interface must have a value "in", "out", or "none". The
absence of a public interface attribute implies a value of "none".

• private interface — This attribute specifies the interface exposed to components in the en-
capsulated set (see below). The private interface must have a value "in", "out", or "none". The
absence of a private interface attribute implies a value of "none".

The name of the initial value attribute is derived from the fact that, in a model with only one
independent variable, this would generally correspond to time, and so the value of the initial value
attribute sets the starting condition for a simulation which progressed from time equals 0.0. The initial
values of variables need not be set in the model definition at all. When multiple simulations are to be run
using the same model, initial and boundary conditions are most conveniently set in an external simulation
configuration file loaded separately by CellML processing software.

Whether or not a component may obtain the value of a variable in another component depends on the
public interface and private interface attributes on the variable declaration and on the place
of the two components in the encapsulation hierarchy. Encapsulation allows the modeller to hide a complex
network of components from the rest of the model and provides a single component as an interface to the
hidden network. Encapsulation effectively divides the network into layers, where connections between the
layers must only be made through the interface components.

The components to which any given component may connect can be divided into four distinct sets
with respect to any given component (the current component). The set of all components immediately
encapsulated by the current component is referred to as the encapsulated set. If the current component
is encapsulated, then the encapsulating component is referred to as the parent, and the set of all other
components encapsulated by the same parent is referred to as the sibling set. If the current component is
not encapsulated, then it has no parent and the sibling set consists of all other components in the model that
are not encapsulated. All other components, which are not available to make connections with the current
component, make up the hidden set. The encapsulation hierarchy and its effects on variable mapping are
described in Section 614.

When a variable is declared with either a public interface or private interface attribute
value of "in", then the value of that variable must be imported from another component. Otherwise, a

11http://www.cellml.org/public/specification/20021106/cellml specification.html#sec reactions
12http://www.cellml.org/public/specification/20021106/cellml specification.html#sec units
13http://www.cellml.org/public/specification/20021106/cellml specification.html#sec import model
14http://www.cellml.org/public/specification/20021106/cellml specification.html#sec grouping

http://www.cellml.org/public/specification/20021106/model structure.pdf 4

variable’s value must be set and modified in the current component. The variable is then said to belong to
or be owned by the current component.

Eventually, it will be possible to specify the temporal and/or spatial variation of a variable’s value using
FieldML15. The capability to include FieldML is still under development. At the present time, all variables
must have scalar real values.

3.2.4 Definition of connections

Connections provide the mechanism for mapping variables declared within one component to variables in
another component, allowing information to be exchanged between the various components in the network.
The mapping of variables involves the transfer of a variable’s value from one component to another, a
process which may involve a conversion to ensure the units match. (More information on units conversion
can be found in Section 516.)

The complete set of variable mappings between any two components constitutes a connection. Only one
connection may be created between any given pair of components in a model. Each connection references
the two components involved in the connection, and then maps variables from each of the components
together. The interface attributes of each pair of variables must be compatible — an "out" variable in
one component’s interface must map to an "in" variable in the other component’s interface. The direction
of each mapping is determined by the value of the public interface and private interface
attributes on the two variables: the value is always passed from the variable with an interface value of
"out" to the variable with an interface value of "in". The value of a variable declared with an interface
value of "out" may be passed out to any number of variables in other components declared with interface
values of "in". The component to which a variable belongs is found by tracing the variable back from
"in" to "out" interfaces, following the model’s connections.

The <connection> element is used to declare a CellML connection. It can only appear inside a
<model> element.

A <connection> element must contain exactly one <map components> element, which is used
to reference the two components involved in the connection. Each <map components> element must
define component 1 and component 2 attributes, the values of which are the names of the components
being referenced. The <map components> element may also define model 1 and model 2 attributes
to clarify in which models components 1 and 2, respectively, will be found. If the attributes model 1 and
model 2 are not specified, the components referenced by attributes component 1 and component 2
must be defined within the current <model> element. The model 1 and model 2 attributes are discussed
in more detail in Section 917.

A <connection> element must also contain one or more <map variables> elements, which
are used to reference the variables being mapped between the two components in the connection. Each
<map variables> element must define variable 1 and variable 2 attributes, the values of which
are equal to the names of variables defined in the components referenced by the component 1 and
component 2 attributes on the <map components> element, respectively. It is not necessary for the
variables that are to be mapped to each other to have the same name, although this will typically be the case.

The CellML example discussed in Section 3.3 demonstrates the definition of a <connection> ele-
ment.

15http://www.physiome.org.nz/sites/physiome/fieldml/pages/index.html
16http://www.cellml.org/public/specification/20021106/cellml specification.html#sec units
17http://www.cellml.org/public/specification/20021106/cellml specification.html#sec import model

http://www.cellml.org/public/specification/20021106/model structure.pdf 5

3.3 Examples

Figure 4 contains a portion of the CellML description of the Hodgkin-Huxley squid axon model published
in 1952. The excerpt contains the definitions of the components corresponding to the membrane and the
sodium channel, and the connection between the two components. Most of the complexity from the full
model definition has been left out for conciseness and clarity. This example is only used to demonstrate the
standard use of the <component>, <variable>, and <connection> elements.

The membrane component declares six variables, which are divided into three categories. The first
variable is called V, and it represents the membrane voltage in the model. It has a public interface
attribute value of "out", which indicates that the variable “belongs” to this component and that its value
may be obtained by other components in the model via connections. It references a units definition by the
name of millivolt (this definition is not included here) and is given an initial value of -75.0 millivolts.

The subsequent four variables are time, i Na (sodium current), i K (potassium current) and i L
(leakage current). They are all declared with a public interface attribute value of "in", which
indicates that their values are obtained from other components via connections.

Finally, a variable C (capacitance) is declared. This <variable> element defines neither a public interface
or a private interface attribute. Both of these attributes therefore assume the default value of
"none", which means that the variable belongs to the current component and is not visible to other com-
ponents in the model.

After the variable declarations, a <math> element in the MathML namespace is used to define an
equation relating V to the other variables. Only the values of the variables belonging to a component
may be mathematically modified in that component. The equation included in Figure 4 is the well known
differential equation from the Hodgkin Huxley model:

d V

d time
=

−(i Na + i K + i L)

C
(1)

The sodium channel component declares three variables, all of which represent quantities that
were also declared in the membrane component. The i Na variable declared in this component has a
public interface attribute value of "out", indicating that the sodium current belongs to this com-
ponent. The value of the sodium current is calculated in this component, although the actual math has been
omitted.

Finally, a <connection> element references the membrane and sodium channel components
using a <map components> element, and maps the V and i Na variables in each component together, us-
ing two <map variables> elements. The value of the variable 1 attribute on each <map variables>
element references the corresponding variable in the membrane component, since this is the component
referenced by the component 1 attribute on the <map components> element. Similarly, the values of
the variable 2 attributes reference variables in the sodium channel component.

3.4 Rules for CellML Documents

The following are the rules for using the <model>, <component>, <variable>, <connection>,
<map components>, and <map variables> elements.

3.4.1 The <model> element

1. Allowed use of the <model> element

• A <model> element must contain only the following elements, which may appear in any order:

– <import model>, <units>, <component>, <group>, and <connection> ele-
ments in the CellML namespace,

http://www.cellml.org/public/specification/20021106/model structure.pdf 6

<model
name="hodgkin_huxley_model_excerpt"
xmlns="http://www.cellml.org/cellml/1.1#"
xmlns:cellml="http://www.cellml.org/cellml/1.1#"
xmlns:cmeta="http://www.cellml.org/metadata/1.0#">

<!--
Units definitions which could be referenced from the <variable> elements
would typically be inserted here. Units are discussed in Section 5.

-->

<component name="membrane">
<!-- the following variable is used in other components -->
<variable

name="V" public_interface="out"
initial_value="-75.0" units="millivolt" />

<!-- the following variables are imported from other components -->
<variable name="time" public_interface="in" units="millisecond" />
<variable name="i_Na" public_interface="in" units="microA_per_cm2" />
<variable name="i_K" public_interface="in" units="microA_per_cm2" />
<variable name="i_L" public_interface="in" units="microA_per_cm2" />

<!-- the following variable is only used internally -->
<variable name="C" initial_value="1.0" units="microF_per_cm2" />

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="membrane_voltage_diff_eq"><eq />

<apply><diff />
<bvar><ci> time </ci></bvar>
<ci> V </ci>

</apply>
<apply><divide />

<apply><minus />
<apply><plus />
<ci> i Na </ci>
<ci> i K </ci>
<ci> i L </ci>

</apply>
</apply>
<ci> C </ci>

</apply>
</apply>

</math>
</component>

<component name="sodium_channel">
<!-- the following variables are used in other components -->
<variable name="i_Na" public_interface="out" units="microA_per_cm2" />

<!-- the following variables are imported from other components -->
<variable name="time" public_interface="in" units="millisecond" />
<variable name="V" public_interface="in" units="millivolt" />

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_Na_calculation"><eq />

<ci> i Na </ci>
... <!-- a function of V & time -->

</apply>
</math>

</component>

<connection>
<map_components component_1="membrane" component_2="sodium_channel" />
<map_variables variable_1="V" variable_2="V" />
<map_variables variable_1="i_Na" variable_2="i_Na" />

</connection>

</model>

FIGURE 4: A small portion of the CellML description of the Hodgkin-Huxley squid axon model from 1952.
This excerpt contains the definition of the components corresponding to the membrane and the sodium chan-
nel, and the connection between them. Much detail has been omitted, but this example clearly demonstrates

the relationship between the <component>, <variable> and <connection> elements.

http://www.cellml.org/public/specification/20021106/model structure.pdf 7

– <RDF> elements in the RDF namespace.

[The recommended best practice is to define the child elements in the CellML namespace in the
order stated above.]

• Each <model> element must define a name attribute.

2. Allowed values of the name attribute

• The value of the name attribute must be a valid CellML identifier as discussed in Section 2.2.118 .

3.4.2 The <component> element

1. Allowed use of the <component> element

• A <component> element must contain only the following elements, which may appear in any
order:

– <units>, <variable> and <reaction> elements in the CellML namespace,
– <math> elements in the MathML namespace,
– <RDF> elements in the RDF namespace.

[The recommended best practice is to define the child elements in the CellML and MathML
namespaces in the order stated above. Note that a <component> element must not appear
inside another <component> element. Such nesting could be intended to indicate a logical
encapsulation relationship, a geometric containment relationship, or some other relationship
between the two components. There is no reason to assume that the nesting hierarchy produced
for one type of relationship would be consistent with the hierarchy produced for other types
of relationships. Therefore, CellML defines these relationships using the <group> element,
rather than nesting of <component> elements.]

• Each <component> element must define a name attribute.

2. Allowed values of the name attribute

• The value of the name attribute must be a valid CellML identifier as discussed in Section 2.2.119 .

• The value of the name attribute must be unique across all <component> elements contained
in the parent <model> element.

3.4.3 The <variable> element

1. Allowed use of the <variable> element

• A <variable> element must contain only the following elements:

– <RDF> elements in the RDF namespace.

• Each <variable> element must define a name attribute and a units attribute. It may also
define units model, public interface, private interface, and initial value
attributes.

2. Allowed values of the name attribute
18http://www.cellml.org/public/specification/20021106/cellml specification.html#sec fundamentals identifiers
19http://www.cellml.org/public/specification/20021106/cellml specification.html#sec fundamentals identifiers

http://www.cellml.org/public/specification/20021106/model structure.pdf 8

• The value of the name attribute must be a valid CellML identifier as discussed in Section 2.2.120 .

• The value of the name attribute of a <variable> element must be unique across all <variable>
elements contained in the same <component> element.

[Two variables in the same component must not have the same name. However, two variables
in different components may have the same name, and a variable may have the same name as its
parent component.]

3. Allowed values of the units attribute

• The value of the units attribute must either be one of the keywords defined in the standard
dictionary or the value of the name attribute on a <units> element defined in the CellML
model referenced by the units model attribute on the current <variable> element.

[The dictionary and the units element are described in Section 521.]

4. Allowed values of the units model attribute

• If present, the value of the units model attribute must equal the value of the xlink:title
attribute of an <import model> element contained within the current <model> element.

[In this rule the use of the xlink namespace prefix indicates that the title attribute is in the
XLink namespace.]

• The absence of the units model attribute implies the current model.

5. Allowed values of the public interface attribute

• If present, the value of the public interface attribute must be "in", "out", or "none".

• If not present, its value defaults to "none".

6. Allowed values of the private interface attribute

• If present, the value of the private interface attribute must be "in", "out", or "none".

• If not present, its value defaults to "none".

7. Proper use of the public interface and private interface attributes

• A <variable> element must not define both public interface and private interface
attributes with values equal to "in".

[A variable’s value must only be obtained via one mapping.]

8. Allowed values of the initial value attribute

• If present, the value of the initial value attribute may be a real number or the value of the
name attribute of a <variable> element declared in the current component.

• The absence of an initial value attribute implies nothing.

[The absence of this attribute would usually mean either that the variable does not need an initial
value or that this value will be supplied in a parameter file or by the user at the time simulations
using the model are run.]

20http://www.cellml.org/public/specification/20021106/cellml specification.html#sec fundamentals identifiers
21http://www.cellml.org/public/specification/20021106/cellml specification.html#sec units

http://www.cellml.org/public/specification/20021106/model structure.pdf 9

9. Proper use of the initial value attribute

• An initial value attribute must not be defined on a <variable> element with a public interface
or private interface attribute with a value of "in".

[These variables receive their value from variables belonging to another component.]

3.4.4 The <connection> element

1. Allowed use of the <connection> element

• A <connection> element must contain only the following elements, which may appear in
any order:

– <map components> and <map variables> elements in the CellML namespace,
– <RDF> elements in the RDF namespace.

• Each <connection> element must contain exactly one <map components> element.

• Each <connection> element must contain at least one <map variables> element.

[It does not make sense to define a connection that does not map variables together. This
rule prevents software from using empty connections to imply information not defined in this
specification.]

3.4.5 The <map components> element

1. Allowed use of the <map components> element

• A <map components> element must contain only the following elements:

– <RDF> elements in the RDF namespace.

• Each <map components> element must define a component 1 attribute and a component 2
attribute. It may also define model 1 and model 2 attributes.

2. Allowed values of the component 1 attribute

• The value of the component 1 attribute must equal the value of the name attribute of a
<component> element contained within the CellML model referenced by the model 1 at-
tribute on the current <map components> element.

3. Allowed values of the component 2 attribute

• The value of the component 2 attribute must equal the value of the name attribute of a
<component> element contained within the CellML model referenced by the model 2 at-
tribute on the current <map components> element.

4. Allowed values of the model 1 attribute

• If present, the value of the model 1 attribute must equal the value of the name attribute of an
<import model> element contained within the current <model> element.

• The absence of the model 1 attribute implies the current model.

5. Allowed values of the model 2 attribute

http://www.cellml.org/public/specification/20021106/model structure.pdf 10

• If present, the value of the model 2 attribute must equal the value of the name attribute of an
<import model> element contained within the current <model> element.

• The absence of the model 2 attribute implies the current model.

6. Proper use of the component 1, component 2, model 1, and model 2 attributes

• The combined values of the component 1 and model 1 attributes must not equal the com-
bined values of the component 2 and model 2 attributes.

[A connection must link two different components.]

• Each <map components> element contained within <connection> elements that are con-
tained within a given<model> element must define a unique pair of (component 1, model 1)
and (component 2, model 2) attribute values.

[There can only be one connection between any two components in a network. This prevents
setting up inconsistent, circular, or duplicate variable mappings between any two components in
the network. However, it does not prevent a model author from creating inconsistent mathemat-
ical relationships between the variables.]

3.4.6 The <map variables> element

1. Allowed use of the <map variables> element

• A <map variables> element must contain only the following elements:

– <RDF> elements in the RDF namespace.

• Each <map variables> element must define a variable 1 attribute and a variable 2
attribute.

2. Allowed values of the variable 1 attribute

• The value of the variable 1 attribute must equal the value of the name attribute of a <variable>
element contained in the <component> element referenced by the component 1 attribute
on the <map components> element within the current <connection> element.

3. Allowed values of the variable 2 attribute

• The value of the variable 2 attribute must equal the value of the name attribute of a <variable>
element contained in the <component> element referenced by the component 2 attribute
on the <map components> element within the current <connection> element.

4. Proper use of the <map variables> element to map variables to each other

[The rules for mapping a variable to other variables depend on the encapsulation hierarchy of the com-
ponent that owns the variable. This hierarchy divides the rest of the components in the model into par-
ent, sibling, encapsulated, and hidden sets, as described in Section 3.2.3. The public interface
attribute defines the availability of a variable to the parent component and components in the sibling
set. The private interface attribute defines the availability of a variable to components in the
encapsulated set. Variables are not available to components in the hidden set.]

• Variables with a public interface or private interface attribute value of "in"
must be mapped to variables with a public interface or private interface attribute
value of "out".

http://www.cellml.org/public/specification/20021106/model structure.pdf 11

• A variable with either a private interface or public interface attribute value of
"in" must be mapped to no more than one other variable in the model.

[Note that a similar restriction does not apply to variables with interface values of "out". An
output variable can be mapped to multiple input variables in various components in the current
model.]

• A variable with a public interface attribute value of "in" must be mapped to a single
variable owned by a component in the sibling set, provided the target variable has a public interface
attribute value of "out", or to a single variable owned by the parent component, provided the
target variable has a private interface attribute value of "out".

• A variable with a public interface attribute value of "out" may be mapped to variables
owned by components in the sibling set, provided the target variables have public interface
attribute values of "in". It may also be mapped to variables owned by the parent component,
provided the target variables have private interface attribute values of "in".

• A variable with a private interface attribute value of "in" may be mapped to a sin-
gle variable owned by a component in the encapsulated set, provided the target variable has a
public interface attribute value of "out".

• A variable with a private interface attribute value of "out"may be mapped to variables
owned by components in the encapsulated set, provided the target variables have public interface
attribute values of "in".

3.5 Rules for Processor Behaviour

3.5.1 Mapping of variables

For interoperability, CellML processing software should take into account the units definitions referenced
by any two variables that are mapped together. If the units references are not equivalent, as defined in
Appendix C.2.122, then a conversion may be required. An algorithm for performing this conversion is
proposed in Appendix C.3.523.

E-mail questions, criticism, submissions or info to info@cellml.org
Input document last modified : Thu Oct 30 16:04:30 NZDT 2003

22http://www.cellml.org/public/specification/20021106/cellml specification.html#sec units rules units equivalence
23http://www.cellml.org/public/specification/20021106/cellml specification.html#sec units rules conversion between units definitions

