
http://www.cellml.org/public/specification/20021106/grouping.pdf 1

CellML Specification 1.1

Draft — 6 November 2002

6 Grouping

6.1 Introduction

It is often useful to organise groups of components within a model into a hierarchical structure. This
structure might reflect a logical organisation of components within the group or their physical configuration.
CellML provides a single mechanism for the specification of both of these types of hierarchy that is based on
a grouping scheme. This grouping scheme is general enough that it can be used within CellML documents
to specify non-hierarchical grouping relationships between components.

In CellML, a hierarchy is a tree of components linked by parent-child relationships, where all of these
relationships are of the same type. A hierarchy has a single root component and at least one child compo-
nent. A model may contain numerous hierarchies of the same type. A component must only appear once
within a set of hierarchies of a given type, but may appear in multiple hierarchies if each of these hierar-
chies is of a different type. CellML defines two types of relationship for use within the grouping scheme:
encapsulation and containment.

The definition of a logical hierarchy of components in a network is known as “encapsulation”. En-
capsulation allows the modeller to hide part of a model by using a single component as an interface to a
hidden submodel. The parent component hides the details of one or more child components from the rest
of the model. Encapsulation provides a powerful mechanism for simplifying the structure of the model by
preventing connections between specified sets of components. Components in the main model must not be
connected to child components in the encapsulated submodel — all variables must be mapped through the
encapsulating parent component. A component in the submodel must only be connected to its parent com-
ponent, other components in the same submodel, and components that it encapsulates. A modeller wishing
to re-use an encapsulated submodel may treat the submodel as a “black box”, and deal exclusively with the
interface presented by the encapsulating component.

The definition of physical hierarchies within a model is known as “containment”. A model author can
specify that one or more child components are physically inside of a parent component without describing
the geometric aspects of the relationship in detail. This information would typically be used by CellML
processing software to provide a physical representation of a model. A model may contain multiple types
of containment hierarchy, which are differentiated based on names that the modeller assigns to these hier-
archies.

Model authors are also free to extend the grouping scheme with user-defined types of relationships
between components. These relationships need not be hierarchical in nature. However, CellML processing
software is only required to recognise encapsulation and containment relationships.

Encapsulation and containment hierarchies do not add any mathematical information to the model.
Model authors must not define their own grouping relationships that are intended to imply mathematical
information.

Models may define multiple hierarchies of multiple types. CellML processing software is free to treat
all hierarchies of the same type as separate hierarchies. Alternatively, it may combine all hierarchies of the
same type into a single hierarchy by assuming that the root components of all explicitly defined hierarchies
are children of a single anonymous component. This anonymous component is not explicitly defined within
the CellML document and has no properties.

http://www.cellml.org/public/specification/20021106/grouping.pdf 2

6.2 Basic Structure

6.2.1 Definition of groups

Logical and physical hierarchies are both declared using the <group> element. This element must be a
child of a <model> element. A <group> element can be used to define multiple hierarchies and associate
multiple relationship types with each hierarchy. The definition of a hierarchy or set of hierarchies of the
same type can be split up over multiple <group> elements, as long as all the children of a given parent
component in a hierarchy appear in a single <group> element.

A <group> element must contain one or more <relationship ref> elements, each of which
must define a relationship attribute, the value of which references one type of relationship. CellML
processing software is required to recognise two types of relationship: encapsulation and containment,
which are indicated by relationship attribute values of "encapsulation" and "containment",
respectively. Model authors can define new types of relationship by specifying a relationship attribute
that is not in the CellML namespace on the <relationship ref> element. All of the relationships
referenced by the <relationship ref> elements within a given <group> element are associated
with all the parent-child pairs defined within that <group> element.

A <group> element must also contain one or more <component ref> elements. Each <component ref>
element must define a component attribute, the value of which references a component within the current
model. A parent-child link is created between components by nesting a <component ref> element that
references the child component inside a <component ref> element that references the parent compo-
nent. Multiple levels of nesting may be used within a single <group> element to define a hierarchy.

All <component ref> elements defined immediately inside the <group> element must contain fur-
ther <component ref> elements when defining an encapsulation or containment hierarchy. This ensures
that valid hierarchical structures are defined. Top-level <component ref> elements need not contain fur-
ther <component ref> elements in <group> elements that reference only user-defined relationships.
This allows the definition of non-hierarchical relationships.

A single hierarchy may be defined in multiple <group> elements. This occurs when a component is
referenced in two groups that reference the same relationship type. However, all of the children of a given
parent component must be defined within a single <group> element. Therefore, any given component can
only be referenced once as a parent and once as a child for a given relationship type across the entire model.
This simplifies the construction and validation of hierarchies.

A <relationship ref> element may define a name attribute in addition to the required relationship
attribute. The value of the name attribute on <relationship ref> elements can be used to refine a
given relationship type. This allows, for instance, the creation of several overlapping containment hier-
archies within the same model, each with a different name. See Section 6.2.4 for more information on
this.

Geometric containment relationship information is formally independent of logical encapsulation infor-
mation, but CellML processing software is free to check for inconsistencies between the two relationships
— it would generally be an error for an encapsulating component to be physically inside one of its encap-
sulated child components.

6.2.2 The encapsulation relationship type

Encapsulation allows the modeller to split a model into layers of complexity. A single component can be
used to encapsulate a complex partial model, and thereby provide a unified interface for all information
passing between that submodel and the rest of the model. This allows a modeller to refine the encapsulated
submodel without having to make any changes to the rest of the model.

A model may contain any number of encapsulation hierarchies, as long as these do not overlap. If
more than one hierarchy is explicitly defined, it may be useful to combine these into a single hierarchy by

http://www.cellml.org/public/specification/20021106/grouping.pdf 3

assigning all unencapsulated components an anonymous parent component. This anonymous component
could make it easier to check that the hierarchies do not overlap and do not define any circular relationships
between components.

The components in a model can be divided into four sets with respect to any given component (the
current component). The set of all components immediately encapsulated by the current component is
the encapsulated set. The parent component is the component that encapsulates the current component.
Other components encapsulated by the same parent make up the sibling set. All other components, which
are not available to make connections with the current component, make up the hidden set. If the current
component is not encapsulated, then it has no parent and the sibling set consists of all other unencapsulated
components in the model.

These sets are best demonstrated by example. Given the network shown in Figure 8, Table 4 lists the
parent components and the components in the encapsulated, sibling, and hidden sets for a selected set of
components picked as the current component.

B

C D

E

F

H

GA

FIGURE 8: This simple model provides the basis for the demonstration of the concepts of encapsulated sets,
parents, sibling sets, and hidden sets, as described in the text. The model consists of eight components each
represented by a circle. The lines between the components represent connections, and a red arrowhead on one
of these lines indicates that the component at the tail of the arrow is encapsulated by the component at the

head of the arrow.

Current Component Encapsulated Set Parent Sibling Set Hidden Set
A B, E anonymous G C, D, F, H
B C, D A E F, G, H
C none B D A, E, F, G, H
E F A B C, D, G, H
G H anonymous A B, C, D, E, F

TABLE 4: This table lists the parent components, and the components in the encapsulated, sibling, and
hidden sets for a selected few components from the example model in Figure 8. Components A and G are
root components of separate hierarchies. It may be useful, however, to assign them an anonymous parent

component that enables the formation of a single encapsulation hierarchy for the entire model.

Every variable must define its availability for use in other components. This is done with the public interface

http://www.cellml.org/public/specification/20021106/grouping.pdf 4

and private interface attributes on the <variable> element. The interface exposed to the par-
ent component and components in the sibling set is defined by the public interface attribute. The
private interface attribute defines the interface exposed to components in the encapsulated set. Each
interface has three possible values: "in", "out", and "none", where "none" indicates the absence of
an interface. The separation of interfaces allows the modeller to incrementally add complexity to an encap-
sulated submodel without changing the interface that the encapsulating component presents to the rest of
the model.

The mappings allowed between variables declared in each component are defined by the public and
private interfaces of each variable and the prohibition on connecting an encapsulated component to compo-
nents other than its parent component, members of its sibling set, and any components it in turn encapsu-
lates. Variables with a public interface attribute value of "in" must be mapped to a single variable
in a component in the sibling set with a public interface attribute value of "out" or to a single
variable in the parent of the current component with a private interface attribute value of "out".
Similarly, variables with a public interface value of "out" may be mapped to variables in compo-
nents in the sibling set with a public interface attribute value of "in" or to variables in the parent
component with a private interface value of "in". Note that defining a public interface
attribute value of "out" on a variable makes it legal to map the variable to other variables, but does not
require that such a mapping occur. If a variable has a public interface attribute value of "none", it
is neither input from or exposed to its parent or components in the sibling set.

Variables with a private interface attribute value of "in" must be mapped to a single variable
in a single component in the encapsulated set with a public interface attribute value of "out".
Variables with a private interface attribute value of "out" may be mapped to variables in com-
ponents in the encapsulated set with a public interface attribute value of "in". If a variable has a
private interface attribute value of "none", it is neither input from or exposed to the components
in the encapsulated set.

If either the public interface attribute or the private interface attribute of a variable have
a value of "in", that variable is declared elsewhere and its value must not be mathematically modi-
fied in the current component. Otherwise, the variable belongs to the current component. If both the
public interface and private interface attributes of a variable have a value of "none", the
variable can only be used in the current component and is invisible to all other components in the model.

The two interface attributes of a variable are completely independent with one exception: it is invalid
for a variable to have both public interface and private interface attributes with a value of
"in". An interface with a value of "in" reflects an unmet need in the current component that must be
satisfied — this need can be met in either the public or private interface, but not both.

6.2.3 The containment relationship type

The containment relationship allows the modeller to specify that a particular component is physically inside
another. This might be used by software to create a physical representation of the model. Containment
relationships can be specified either in combination with or independent of encapsulation relationships.
Containment relationships do not influence any aspect of model definition or behaviour.

6.2.4 Named containment relationship types

CellML allows the definition of multiple overlapping containment hierarchies in a given model. This func-
tionality allows the modeller to define several different ways of organising a model, each of which might
highlight a different aspect of the model’s physical structure.

Multiple containment hierarchies are created by definingname attributes on the <relationship ref>
elements that have relationship attribute values of "containment". In effect, the introduction of a

http://www.cellml.org/public/specification/20021106/grouping.pdf 5

name attribute defines a new relationship type that has the same semantics as the unnamed containment rela-
tionship type. All containment hierarchies that share the same name are subject to the same rules that apply
to any set of hierarchies that share the same relationship type. That is, each component must be referenced
at most once as a parent or child for a given relationship type, and circular hierarchies must not be defined.
Note that <group> elements that contain <relationship ref> elements with a relationship
attribute value of "containment" and that do not define a name attribute belong to a single relationship
type that is separate from any named containment relationship types.

6.2.5 User-defined relationship types

Modellers are free to use the grouping syntax of CellML to organise model components in ways not defined
by the CellML specification. To do this, the model author defines a new relationship type, the name of
which is used as the value of the relationship attribute on the <relationship ref> element.
The relationship attribute must be placed in an extension namespace, because future versions of the
CellML specification may define additional relationship types, the names of which could otherwise conflict
with user-defined relationship types.

User-defined relationship types can be used in the definition of hierarchical relationships and can also be
used to define more generic grouping relationships. For example, a modeller may define a relationship type
called adjacency, that indicates that any components referenced inside the group are physically adjacent
to each other.

Modellers are free to use the name attribute on the <relationship ref> element to specify multi-
ple hierarchies for user-defined relationship types, as is possible for the containment relationship type.

This specification does not provide a mechanism by which modellers may specify the meaning of a
user-defined type of relationship. This definition must be provided by the processing software declaring the
new relationship type.

6.3 Examples

Figure 9 demonstrates the use of the <group> element to define an encapsulation relationship. This exam-
ple is taken from the two reaction pathway with encapsulation example1 from the examples section of the
CellML website. It shows how a component representing an overall reaction (total reaction) can en-
capsulate components representing intermediate reactions (first reaction and second reaction)
and their by-products (C and D).

<group>
<relationship_ref relationship="encapsulation" />
<component_ref component="total_reaction">

<component_ref component="first_reaction" />
<component_ref component="second_reaction" />
<component_ref component="C" />
<component_ref component="D" />

</component_ref>
</group>

FIGURE 9: Example demonstrating the use of the <group> element to define a logical encapsulation rela-
tionship. See text for more details.

1http://www.cellml.org/examples/examples/signal transduction models/basic reaction models/two reaction model with encapsulation doc.html

http://www.cellml.org/public/specification/20021106/grouping.pdf 6

Figure 10 demonstrates the use of the <group> element to define encapsulation and containment rela-
tionships, the construction of two named containment relationship types, and the specification of a custom
relationship type (adjacency) in an extension namespace.

<group>
<relationship_ref name="membrane" relationship="containment" />
<component_ref component="cell">

<component_ref component="cell_membrane" />
</component_ref>

</group>

<group>
<relationship_ref relationship="encapsulation" />
<relationship_ref name="membrane" relationship="containment" />
<component_ref component="cell_membrane">

<component_ref component="sodium_channel" />
<component_ref component="calcium_channel" />

</component_ref>
</group>

<group>
<relationship_ref name="intracellular" relationship="containment" />
<component_ref component="cell">

<component_ref component="network_sarcoplasmic_reticulum" />
<component_ref component="junctional_sarcoplasmic_reticulum" />

</component_ref>
</group>

<group>
<relationship_ref

app:relationship="adjacency"
xmlns:app="http://www.software.com/cellml_processor" />

<component_ref component="network_sarcoplasmic_reticulum" />
<component_ref component="junctional_sarcoplasmic_reticulum" />

</group>

FIGURE 10: Examples demonstrating the use of the <group> element. See text for more details.

The first <group> element states that the cell membrane component is physically inside the cell
component and that this particular containment relationship type is called membrane. The next <group>
element states that the sodium channel and calcium channel components are both physically in-
side and logically encapsulated by the cell membrane component. This containment relationship com-
pletes the membrane containment hierarchy. The encapsulation relationship prevents the sodium and
calcium channel components from being connected to any components other than the cell membrane
component, each other, and any components they in turn encapsulate.

The third <group> element states that the two components representing parts of the sarcoplasmic
reticulum are physically inside the cell, and that this relationship type is called intracellular. Finally,
the fourth <group> element introduces the user-defined relationship adjacency and states that the two
sarcoplasmic reticulum components share this relationship. This relationship type is declared by putting the
relationship attribute in an extension namespace and assigning it a value of "adjacency". Note
that this relationship is not hierarchical in nature, and CellML processing software is free to ignore the

http://www.cellml.org/public/specification/20021106/grouping.pdf 7

information provided by this group.

6.4 Rules for CellML Documents

6.4.1 The <group> element

1. Allowed use of the <group> element

• A <model> element may contain any number of <group> elements.
• A <group> element must contain only the following elements, which may appear in any order:

– <relationship ref> and <component ref> elements in the CellML namespace,
– <RDF> elements in the RDF namespace.

[Recommended practice is to define the CellML namespace child elements in a <group>
element in the order stated above.]

• A <group> element must contain at least one <relationship ref> element.
• A <group> element must contain at least one <component ref> element.

6.4.2 The <relationship ref> element

1. Allowed use of the <relationship ref> element

• A <relationship ref> element must contain only the following elements:

– <RDF> elements in the RDF namespace.

• Each <relationship ref> element must define a relationship attribute in either the
CellML namespace or an extension namespace. It may also define a name attribute.
[A relationship attribute declaring a user-defined relationship type is placed in an ex-
tension namespace. This restriction has been included to prevent conflicts with future versions
of the CellML specification, which may define additional types of relationships in the CellML
namespace.]

2. Allowed values of the relationship attribute

• The value of a relationship attribute in the CellML namespace must be "containment"
or "encapsulation".

3. Allowed values of the name attribute

• The value of the name attribute must be a valid CellML identifier as discussed in Section 2.2.12 .
[Note that unlike most other name attributes, the value of the name attribute on a <relationship ref>
element is not expected to be unique across the current model. Instead, <group> elements that
include <relationship ref> elements that share the same name attribute value form the
parts of a single hierarchy.]

4. Proper use of the name attribute

• A name attribute must not be defined on a <relationship ref> element with a relationship
attribute value of "encapsulation".
[A model must define at most one unnamed encapsulation hierarchy.]

2http://www.cellml.org/public/specification/20021106/cellml specification.html#sec fundamentals identifiers

http://www.cellml.org/public/specification/20021106/grouping.pdf 8

5. Proper use of the relationship and name attributes

[The following rules together prevent the model author from referencing the same hierarchy more
than once within a given <group> element.]

• A <group> element must not contain two or more <relationship ref> elements that
define a relationship attribute in a common namespace with the same value and that have
the same name attribute value.

• A <group> element must not contain two or more <relationship ref> elements that
define a relationship attribute in a common namespace with the same value and do not
define name attributes.

6.4.3 The <component ref> element

1. Allowed use of the <component ref> element

• A <component ref> element must contain only the following elements, which may appear
in any order:

– <component ref> elements in the CellML namespace,
– <RDF> elements in the RDF namespace.

• A <component ref> element must define a component attribute.

2. Proper use of the <component ref> element

• A <component ref> element that is defined immediately within a <group> element that
contains a <relationship ref> element with a relationship attribute value of "encap-
sulation" or "containment" must contain at least one child <component ref> ele-
ment.

[Containment and encapsulation relationships must be hierarchical.]

• In a given hierarchy, only one of the <component ref> elements that reference a given com-
ponent may contain further <component ref> elements.

[This rule prevents a given component from being a parent more than once in a given hierarchy.
A hierarchy is a set of components linked by a common type of parent-child relationship. The
definition of a hierarchy may be split over multiple <group> elements, but the definition of a
set of parent-child links must not be. It would be much more difficult to assemble a hierarchy
from a CellML document if a set of parent-child links could be defined in multiple <group>
elements.]

• In a given hierarchy, only one of the <component ref> elements that reference a given com-
ponent may be contained inside another <component ref> element.

[Complements the previous rule. This one prevents a given component from being a child more
than once in a given hierarchy.]

• In a given hierarchy, a child component must not directly or indirectly contain its parent among
its children.

[A hierarchy must not be circular.]

3. Allowed values of the component attribute

• The value of the component attribute must equal the value of the name attribute of a <component>
element contained within the current <model> element.

http://www.cellml.org/public/specification/20021106/grouping.pdf 9

6.5 Rules for Processor Behaviour

6.5.1 Treatment of relationship types in a single model

A given relationship type must have the same semantics across a model and at all levels in every hierarchy
associated with that relationship type. The semantics of the encapsulation and containment relationship
types are defined in Section 6.2.2 and Section 6.2.3, respectively.

Within a given<model> element, any hierarchies defined in <group> elements that contain <relationship ref>
elements with identical relationship and name attribute values belong to the same relationship type,
and must be treated as such. Any hierarchies defined in <group> elements that contain <relationship ref>
elements with identical relationship attribute values and undefined name attributes belong to the same
relationship type, and must be treated as such.

6.5.2 Groups must not imply mathematical information

Modellers must not use CellML groups to add mathematical information to the model. Modellers must not
define their own types of relationships that imply mathematical behaviour. This ensures that the mathemat-
ical behaviour of a model can be properly reproduced by all CellML processing software.

6.5.3 Groups must not imply metadata information

Modellers must not use CellML groups to associate properties or classification information with sets of
components. The metadata functionality is the proper method for making such associations. This increases
the chance of that information being used by a range of CellML processing software.

E-mail questions, criticism, submissions or info to info@cellml.org
Input document last modified : Thu Oct 30 16:04:30 NZDT 2003

