
Specification for CellML
Version 1.1

[2002 - 11 - 06]

Authors: Autumn Cuellar1, Poul Nielsen1, David Bullivant1, David Nickerson1, Warren Hedley, Melanie
Nelson, Catherine Lloyd1

1 The Bioengineering Institute
The University of Auckland

New Zealand

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 3

CellML Specification 1.1

Draft — 6 November 2002
This Version:

http://www.cellml.org/public/specification/20021106/cellml specification.html

Latest Version:
http://www.cellml.org/public/specification/cellml specification.html

Previous Versions:
http://www.cellml.org/public/specification/20010810/cellml specification.html

http://www.cellml.org/public/specification/20010518/cellml specification.html

http://www.cellml.org/public/specification/20010302/cellml specification.html

Authors:
Autumn Cuellar (Bioengineering Institute, University of Auckland)
Poul Nielsen (Bioengineering Institute, University of Auckland)
David Bullivant (Bioengineering Institute, University of Auckland)
David Nickerson (Bioengineering Institute, University of Auckland)
Warren Hedley
Melanie Nelson
Catherine Lloyd (Bioengineering Institute, University of Auckland)

Abstract

This document specifies CellMLTM 1.1, an XML-based language for describing and exchanging models of
cellular and subcellular processes. MathML embedded in CellML documents is used to define the underly-
ing mathematics of models. Models consist of a network of re-usable components, each with variables and
equations manipulating those variables. Models may import other models to create systems of increasing
complexity. Metadata may be embedded in CellML documents using RDF.

Status of this document

This document is a draft version of the specification for CellML 1.1. As a Working Draft, this specification
may be updated, replaced, or made obsolete at any time. It is distributed for discussion purposes only and
should not be used as a reference.

The authors invite feedback from the public. Readers are encouraged to subscribe and send comments
to the cellml-discussion1 mailing list. Alternatively, readers may send comments and questions via e-mail
to info@cellml.org.

The latest version of the CellML specification is always available at the following URI:

http://www.cellml.org/public/specification/index.html

The list of errata associated with this document is available at the following URI:

http://www.cellml.org/public/specification/20021106/errata.html

1http://www.cellml.org/public/mailing lists/discussion.html

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 5

Contents

1 Introduction 9
1.1 Introduction to CellML . 9

1.1.1 Purpose and scope of CellML . 9
1.1.2 What is XML? . 9
1.1.3 Terminology . 10

1.2 Structure of the CellML Specification . 11

2 Fundamentals 13
2.1 Introduction . 13
2.2 Basic Structure . 13

2.2.1 Definition of a valid CellML identifier . 13
2.2.2 Namespaces in CellML . 13
2.2.3 Extending CellML documents . 14

2.3 Examples . 15
2.4 Rules for CellML Documents . 17

2.4.1 Valid CellML identifiers . 17
2.4.2 Proper use of the CellML namespace . 18
2.4.3 Extension namespaces . 18
2.4.4 Text nodes within CellML elements . 18

2.5 Rules for Processor Behaviour . 18
2.5.1 Treatment of CellML identifiers . 18
2.5.2 Treatment of attribute namespaces . 18
2.5.3 Treatment of extension namespaces . 19

3 Model Structure 21
3.1 Introduction . 21
3.2 Basic Structure . 21

3.2.1 Definition of a model . 21
3.2.2 Definition of components . 21
3.2.3 Definition of variables . 22
3.2.4 Definition of connections . 23

3.3 Examples . 24
3.4 Rules for CellML Documents . 26

3.4.1 The <model> element . 26
3.4.2 The <component> element . 26
3.4.3 The <variable> element . 27
3.4.4 The <connection> element . 28
3.4.5 The <map components> element . 29
3.4.6 The <map variables> element . 30

3.5 Rules for Processor Behaviour . 31
3.5.1 Mapping of variables . 31

4 Mathematics 33
4.1 Introduction . 33
4.2 Basic Structure . 33

4.2.1 Definition of mathematics . 33
4.2.2 MathML’s presentation and content markup elements 33
4.2.3 The CellML subset of MathML content elements 34

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 6

4.2.4 Ordering of expressions . 34
4.2.5 Scope of expressions . 34
4.2.6 Associating units with numbers . 34
4.2.7 Definition of scripts . 36

4.3 Examples . 36
4.4 Rules for CellML Documents . 38

4.4.1 The <mathml:math> element . 38
4.4.2 The <mathml:ci> element . 38
4.4.3 The <mathml:cn> element . 39
4.4.4 Modification of variables . 39

4.5 Rules for Processor Behaviour . 39
4.5.1 Ordering of expressions . 39
4.5.2 Scope of expressions . 39
4.5.3 Treatment of annotations . 39

5 Units 41
5.1 Introduction . 41
5.2 Basic Structure . 41

5.2.1 Dictionary of standard units . 41
5.2.2 User defined units . 42
5.2.3 New base units . 44
5.2.4 Expansion of units definitions . 44
5.2.5 Expansion of the non-SI units definitions in the CellML dictionary 44
5.2.6 Conversion between units definitions . 45
5.2.7 Equation dimension checking . 45

5.3 Examples . 46
5.3.1 User-defined units and new base units . 46
5.3.2 Advanced examples . 46

5.4 Rules for CellML Documents . 46
5.4.1 The <units> element . 47
5.4.2 The <unit> element . 47

5.5 Rules for Processor Behaviour . 49
5.5.1 Resolving references to units definitions . 49
5.5.2 Units associated with the MathML constants elements 49

6 Grouping 51
6.1 Introduction . 51
6.2 Basic Structure . 51

6.2.1 Definition of groups . 51
6.2.2 The encapsulation relationship type . 52
6.2.3 The containment relationship type . 54
6.2.4 Named containment relationship types . 54
6.2.5 User-defined relationship types . 55

6.3 Examples . 55
6.4 Rules for CellML Documents . 57

6.4.1 The <group> element . 57
6.4.2 The <relationship ref> element . 57
6.4.3 The <component ref> element . 58

6.5 Rules for Processor Behaviour . 59

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 7

6.5.1 Treatment of relationship types in a single model 59
6.5.2 Groups must not imply mathematical information 59
6.5.3 Groups must not imply metadata information . 59

7 Reactions 61
7.1 Introduction . 61

7.1.1 Pathway model representations supported by CellML 61
7.1.2 Qualitative and quantitative pathway models . 61

7.2 Basic Structure . 62
7.3 Examples . 63
7.4 Rules for CellML Documents . 66

7.4.1 The <reaction> element . 66
7.4.2 The <variable ref> element . 66
7.4.3 The <role> element . 67

7.5 Rules for Processor Behaviour . 70
7.5.1 Implications of the reversible attribute . 70
7.5.2 The absence of a stoichiometry attribute . 70
7.5.3 Chemical information implied by the stoichiometry attribute 70
7.5.4 The absence of a delta variable attribute 70
7.5.5 Math implied by the delta variable and stoichiometry attributes 70
7.5.6 Meaning of mathematics in reactions . 71
7.5.7 Resolution of inconsistencies . 71

8 Metadata Framework 75
8.1 Introduction . 75
8.2 Basic Structure . 75
8.3 Examples . 76
8.4 Rules for CellML Documents . 78

8.4.1 Proper use of the cmeta:id attribute . 78
8.4.2 The <rdf:RDF> element . 78

8.5 Rules for Processor Behaviour . 78
8.5.1 Treatment of cmeta:id attributes . 78
8.5.2 General meaning of metadata . 78

9 Importing Models 81
9.1 Introduction . 81
9.2 Basic Structure . 81

9.2.1 Definition of imported models . 81
9.2.2 Referencing units from an imported model . 81
9.2.3 Mapping variables between models . 81

9.3 Examples . 82
9.4 Rules for CellML Documents . 82

9.4.1 The <import model> element . 82
9.5 Rules for Processor Behaviour . 83

9.5.1 Treatment of imported models . 83

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 8

A Using The CellML 1.0 DTD 85
A.1 Introduction . 85
A.2 The CellML DOCTYPE declaration . 85
A.3 CellML without a DTD . 85
A.4 Use of MathML within CellML . 85
A.5 Treatment of namespaces . 86
A.6 The CellML 1.1 DTD . 86

B Scripting functionality in CellML 91
B.1 Introduction . 91
B.2 Availability of scripts . 91
B.3 Embedding scripts in CellML . 91
B.4 Preferred scripting language . 91
B.5 Referencing scripts from MathML . 91

B.5.1 The <mathml:csymbol> element . 92
B.6 Effects of scripts . 92

C Advanced Units Functionality 93
C.1 Introduction . 93
C.2 Terminology . 93

C.2.1 Equivalence of units references . 93
C.2.2 Dimensional equivalence of units definitions . 93

C.3 Algorithms . 93
C.3.1 Simplification of units definitions . 93
C.3.2 Units-based restrictions on the use of MathML operators 94
C.3.3 Applying operators to units definitions . 94
C.3.4 Expansion of units definitions . 94
C.3.5 Conversion between units definitions . 98
C.3.6 Equation dimension checking . 99

C.4 Examples . 99
C.4.1 User-defined units and new base units . 99
C.4.2 Expansion of user-defined units . 99
C.4.3 Conversion between units definitions . 103
C.4.4 Equation dimension checking . 104

D Changes 107
D.1 Changes between the 10 August 2001 Recommendation and the 6 November 2002 Draft . 107
D.2 Changes between 18 May 2001 Final Draft and the 10 August 2001 Recommendation . . . 109
D.3 Changes between 2 March 2001 Draft and the 18 May 2001 Final Draft 110

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 9

1 Introduction

1.1 Introduction to CellML

This document specifies CellMLTM 1.1, an XML-based language for describing and exchanging models of
cellular and subcellular processes. CellML is being developed by scientists at the University of Auckland
(in the Bioengineering Institute) and at Physiome Sciences, Inc. The development of CellML is guided
by an advisory board drawn from many different areas of biological modelling (see the project team2 page
on the CellML website for more information). CellML is being developed as an open standard, and all
interested parties are encouraged to send feedback to info@cellml.org, or to the cellml-discussion3 mailing
list.

1.1.1 Purpose and scope of CellML

CellML is intended to support the definition of models of cellular and subcellular processes. CellML facil-
itates the re-use of models and parts of models by using a component-based architecture. Models are split
into logical sub-parts called components that are connected together to form a model.

CellML separates the specification of the underlying mathematics of a model from a particular imple-
mentation of the model’s solution. This makes a model independent of a particular operating system or
programming language and allows modellers to easily integrate parts of other peoples’ models into their
own models. CellML also allows the generation of equations for publishing from the same definition upon
which the solution method is based, removing inconsistencies between the model and associated results in
academic papers, and allowing others to reliably reproduce these results.

The scope of the CellML language is specifically limited to the definition of model structure. All other
types of information that modellers need or want to include in a model document are incorporated using
other languages. For instance, mathematics is included in CellML documents using Mathematical Markup
Language4 (MathML). Metadata may be included using the Resource Description Framework5 and the
Dublin Core Metadata Element Set6.

1.1.2 What is XML?

The CellML language is defined in terms of a meta-language called eXtensible Markup Language (XML)7.
XML is a standard published by the World Wide Web Consortium8, the organisation responsible for defining
many internet-related standards, most notably HTML. XML is essentially a means of adding structure to text
documents, allowing machines to unambiguously associate text or binary data with a particular component
in a document’s data model.

XML is an appropriate medium for CellML because it is both human and machine readable. A model
author can create a CellML document with a text editor or with CellML authoring software. XML is a well-
defined and widely used specification. Many free software utilities and libraries for the processing of XML
already exist, simplifying the development of CellML processing software. XML has also been designed
to be usable over the internet, making CellML suitable for the interchange of models between software and
databases at different locations.

A quick introduction to XML9 is available in the examples section of the CellML website.

2http://www.cellml.org/public/about/project team.html
3http://www.cellml.org/public/mailing lists/discussion.html
4http://www.w3.org/Math/
5http://www.w3.org/RDF
6http://dublincore.org/documents/1999/07/02/dces/
7http://www.w3.org/XML/
8http://www.w3.org/
9http://www.cellml.org/examples/introduction/xml guide.html

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 10

1.1.3 Terminology

A model is a representation of the rules that govern the behaviour of a system. The terms in the following
list provide two useful model classifications.

• qualitative model

A model that defines the relationships between objects in the system, without defining any mathemat-
ics that represent the behaviour of those objects.

• quantitative model

A model that defines the relationships between objects in the system, including the mathematics that
represents the behaviour of those objects.

The terms defined in the following list are used in specifying the conformance of CellML documents
and processing software to this specification.

• may

Conforming CellML documents are permitted but not required to adhere to the limitation described.
Conforming CellML software is permitted but not required to behave as described.

• must

Conforming CellML documents must adhere to the limitation described. Conforming CellML soft-
ware must behave as described.

• for interoperability

A non-binding recommendation included to increase the chances that CellML documents will be
processed in a consistent manner by different applications.

• error

A violation of the rules of this specification; results are undefined. Conforming CellML software may
detect and report an error and may recover from it. The recommended best practice is for software to
make information about errors available to the user.

• valid CellML document

A document that conforms to all of the rules in this specification.

• valid CellML subset document

A valid CellML document that only uses MathML elements from the CellML subset defined in Sec-
tion 4.2.3.

• CellML conformant software

CellML processing software that will interpret any valid CellML subset document according to the
language semantics and processor rules defined in this specification.

• fully MathML capable software

Software that can correctly interpret the full set of MathML content markup elements.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 11

1.2 Structure of the CellML Specification

The CellML specification is divided into several sections, each of which discusses a particular aspect of
CellML:

• Section 1 — Introduction — This section introduces CellML, XML, the terminology used through-
out the specification, and the structure of the specification.

• Section 2 — Fundamentals — This section explains concepts used in all other sections of the specifi-
cation, such as the definition of a valid CellML identifier and the use of XML namespaces in CellML.

• Section 3 — Model Structure — This section describes how models are organised in CellML. It
includes an explanation of the use of a network of components to define a model and a discussion of
variables in CellML.

• Section 4 — Mathematics — This section describes how mathematical expressions are defined in
CellML documents using MathML and defines the CellML subset of MathML elements.

• Section 5 — Units — This section explains the requirements for units in CellML and describes how
a modeller can define arbitrary sets of units.

• Section 6 — Grouping — This section explains how a model can be organised into logical encapsu-
lation and geometric containment hierarchies by grouping components.

• Section 7 — Reactions — This section introduces CellML syntax that allows the modeller to classify
the involvement of the participants in the chemical expressions that make up reaction/pathway models.

• Section 8 — Metadata Framework — This section describes how RDF is used in CellML documents
to define metadata and associate it with models, model components, and other CellML elements.

• Section 9 — Importing Models — This section explains how a model may be built on existing
models. The import feature also allows a modeller to create an incomplete model, with the expectation
that the necessary components and connections may be included in the future when more knowledge
is available.

• Appendices — The appendices cover advanced and technical topics including the CellML DTD,
recommendations for adding scripts to CellML documents, and units processing algorithms.

A valid CellML model can be created using nothing beyond the material covered in the fundamentals,
model structure, mathematics, and units sections of the specification. The concepts in the remaining sections
of the specification allow modellers to build more meaningful models.

Each section of the specification is further divided into five subsections:

• Introduction — This subsection explains the purpose of the elements covered in the current section.

• Basic Structure — This subsection describes the new elements and attributes introduced in the cur-
rent section of the specification and how they are combined.

• Examples — This subsection provides one or two basic examples of the correct use of the elements
and attributes introduced in the current section of the specification. More extensive examples can be
found in the examples section10 of the CellML website.

• Rules for CellML Documents — This subsection provides formal rules for the use of the elements
and attributes introduced in the current section to create valid CellML documents. These rules are
specified as bulleted lists. Each rule may have an associated explanation, which appears directly after
the rule in square brackets ([]).

10http://www.cellml.org/examples/introduction/index.html

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 12

• Rules for Processor Behaviour — This subsection provides some rules for correct CellML processor
behaviour with regards to the elements and attributes introduced in the current section.

Throughout the CellML specification, all XML elements and attributes that occur in the text are in the
CellML namespace unless explicitly stated otherwise.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 13

2 Fundamentals

2.1 Introduction

This section of the CellML specification introduces some concepts that are used throughout the entire lan-
guage and defines rules that apply to all or many of the other parts of the specification. These include the
definition of names and use of namespaces in CellML.

2.2 Basic Structure

2.2.1 Definition of a valid CellML identifier

The most common use of a CellML identifier is the name attribute required on many basic elements in
CellML. The value of this attribute can be used to reference that element from elsewhere in the model
definition or from another model definition altogether. An object’s name can generally be thought of as a
unique identifier for that object. Although the XML specification defines a mechanism for specifying that
the value of an attribute is unique across an entire document (with the ID attribute type), this functionality
is not used in CellML 1.1 because an object’s name need only be unique across its own class of objects.

The generation of computer code for running simulations is one of the target applications for CellML.
The value of an object’s name attribute is intended to be a suitable name for the same object when it
is represented in computer code. For this reason CellML identifiers must consist of only alphanumeric
characters and the underscore character (“ ”), and are subject to some additional constraints outlined below.
These names will generally not be the most effective way of identifying the object to humans working with
CellML models as it is not possible to include whitespace or formatting. More human readable names can
be defined and associated with CellML objects using the metadata functionality introduced in Section 8.

The XML specification is based on the Unicode standard, which defines a scheme for 16 bit character
encoding. Thus it is possible to include, for instance, Japanese characters in a valid XML document. In
the interests of making the code generation process as convenient as possible for those using mainstream
programming languages, CellML identifiers are subject to the following constraints:

• An identifier must consist only of alphanumeric characters from the US-ASCII character set and
underscore characters,

• An identifier must contain at least one letter, and

• An identifier must not begin with a digit.

Convenient code generation is also the reason why colons, periods, and hyphens may not appear in
CellML identifiers. CellML identifiers are case sensitive: a variable with an identifier of ABC is different
from a variable with an identifier of abc.

2.2.2 Namespaces in CellML

Namespaces in XML11 is a companion specification to the XML 1.0 specification12. XML namespaces
add a second level of naming to elements and attributes, allowing processing software to distinguish be-
tween elements and attributes from different languages. A namespace is identified by a Uniform Resource
Identifier13 (URI), which has the feature of being unique. The value of a namespace URI need have nothing
to do with the XML document that uses it. However, it typically points to a document that defines the rules
for the language. The URI may be mapped to a prefix, which may then be used in front of element and

11http://www.w3.org/TR/1999/REC-xml-names-19990114/
12http://www.w3.org/TR/2000/REC-xml-20001006
13http://www.ietf.org/rfc/rfc2396.txt

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 14

attribute names, separated by a colon. If not mapped to a prefix, the URI sets the default namespace for the
current element and all of its children.

The CellML 1.1 specification defines a small number of elements and attributes and a namespace with
which they must be associated. Putting CellML elements and attributes in the CellML namespace allows
them to be distinguished from elements and attributes from other vocabularies with which CellML syntax
might be combined in a CellML document. For instance, CellML makes use of the MathML vocabulary for
the definition of equations, and all MathML elements must be placed in the MathML namespace in order
for CellML processing software to recognise those elements. The use of namespaces also allows processing
software to distinguish elements and attributes from different versions of the CellML specification. Appli-
cations that store their own proprietary data within a CellML document must define their own namespaces
and associate their own elements and attributes with those namespaces, as discussed in Section 2.2.3.

This specification is primarily concerned with the rules and semantics that relate to the elements and
attributes in the CellML namespace, which are used in the definition of model structure. It is an error
if documents contain elements and attributes in the CellML namespace that are not defined in this spec-
ification. This specification also defines how elements and attributes in the MathML, XLink, RDF and
CellML Metadata namespaces can be combined with elements and attributes in the CellML namespace,
and how processing software should deal with content in those namespaces. MathML is particularly impor-
tant to CellML because content in this namespace is considered as fundamental as content in the CellML
namespace. The CellML import feature makes use of the W3C hyperlink standard, XLink, to refer to other
models. Metadata is defined using elements in the RDF namespace and linked to CellML elements using
an id attribute in the CellML Metadata namespace as described in Section 8. Any CellML element may
contain elements and attributes in other namespaces, which CellML processing software is free to ignore.

Table 1 lists the names, URIs and recommended prefixes of the namespaces referenced in this specifica-
tion. For interoperability, the root element of any CellML document should set the default namespace and
map the cellml prefix to the CellML 1.1 namespace URI. The latter simplifies the association of elements
and attributes with the CellML namespace in regions of the document where the default namespace is not the
CellML namespace. For instance, the MathML elements used to define equations are typically placed inside
a <math> element that changes the default namespace to the MathML namespace. A cellml:units
attribute in the CellML namespace can then be added to each of MathML’s <cn> elements without having
to redeclare the CellML namespace every time it is used.

Namespace Name Namespace URI Recommended Prefix
CellML "http://www.cellml.org/cellml/1.1#" cellml
CellML Metadata "http://www.cellml.org/metadata/1.0#" cmeta
MathML "http://www.w3.org/1998/Math/MathML" mathml
XLink "http://www.w3.org/1999/xlink" xlink
RDF "http://www.w3.org/1999/02/22-rdf-syntax-ns#" rdf

TABLE 1: The names, URIs and recommended prefixes of the namespaces referenced in this specification.
See text for more details.

2.2.3 Extending CellML documents

Any namespace with a URI not defined in Table 1 is an extension namespace. Any element in an exten-
sion namespace is an extension element. Any attribute in an extension namespace is an extension attribute.
Model authors and CellML processing software may store information not covered by the CellML speci-
fication in a CellML document by defining their own extension elements and extension attributes. When

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 15

authors and implementors define extension namespaces, it is recommended that they use URIs under their
jurisdiction. Extension elements and extension attributes may appear anywhere in a CellML document as
long as the result is well-formed XML.

For interoperability CellML processing software should respect the extension elements and attributes of
other applications. If a model is created in application A, which adds its own extension elements, and is
subsequently edited in application B, then application B should attempt to include application A’s extension
elements in its output, even if these extension elements are now invalid. Applications will need to validate
their own extension data if a CellML document is read in from a non-trusted location.

The namespace extension mechanism provides a convenient way to associate a small amount of application-
specific information with a model defined in CellML. However, it is recommended that applications needing
to store large amounts of information, such as rendering or simulation information, do so in a separate docu-
ment. This will make CellML documents easier to exchange and will prevent the loss of application-specific
information if the model is passed through applications unaware of the extensions.

2.3 Examples

Figure 1 contains some example CellML elements, each of which defines a name attribute. The values of
the name attribute on the first three elements are valid CellML identifiers. The values of the name attribute
on the last two elements are invalid identifiers.

<!--
The following elements have name attributes with valid values.

-->

<component name="my_favorite_component" />

<variable name="_ca2_conc" units="millimolar" />

<model name="model1345" />

<!--
The following elements have name attributes with invalid values.
Names may not consist purely of underscores or contain colons.

-->

<component name="___" />

<component name="my_model:my_component" />

FIGURE 1: XML elements defining name attributes. Valid and invalid CellML identifiers are shown, as noted
in the comments.

Figure 2 contains portions of a typical CellML document that demonstrate the recommended use of
namespaces. The root element sets the default namespace to the CellML namespace URI and explicitly
maps the CellML namespace URI to the cellml prefix. The <math> element that encloses a set of
equations inside a component element resets the default namespace to the MathML namespace. The units
attribute on the <cn> element (which is in the MathML namespace) is placed in the CellML namespace by
using the previously-defined cellml prefix.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 16

<model
name="simple_electrophysiological_model"
xmlns="http://www.cellml.org/cellml/1.1#"
xmlns:cellml="http://www.cellml.org/cellml/1.1#">

...

<component name="extra_cellular_space">
...
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><eq />

<apply><diff />
<bvar><ci> time </ci></bvar>
<ci> Na </ci>

</apply>
<apply><times />
<cn cellml:units="dimensionless"> -1.0 </cn>
<ci> I Na </ci>

</apply>
</apply>
...

</math>
</component>

...

</model>

FIGURE 2: A CellML fragment demonstrating the recommended use of namespaces in a CellML document.
This fragment is taken from the simple electrophysiological model example on the CellML website.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 17

Figure 3 demonstrates how software can embed its own information inside a valid CellML document
using XML namespaces. The <model> element sets the default namespace to the CellML namespace,
and maps the app prefix to an extension namespace (i.e., one not defined in Table 1). The app prefix is
then used to define an <app:component rendering information> element and two attributes on
a <component> element.

<model
name="cellml_model_with_extensions"
xmlns="http://www.cellml.org/cellml/1.1#"
xmlns:cellml="http://www.cellml.org/cellml/1.1#"
xmlns:app="http://www.physiome.org.nz/cellml_processor">

<app:component_rendering_information>
cell : blue
membrane : yellow
channel : red

</app:component_rendering_information>

<component
name="cell"
app:component_type="cell"
app:render_corners="100, 100, 400, 400" />

</model>

FIGURE 3: A CellML document demonstrating the use of XML namespaces to embed application specific
data inside a CellML document. The extension namespace URI was invented for demonstration purposes

only.

2.4 Rules for CellML Documents

2.4.1 Valid CellML identifiers

• A valid CellML identifier must consist of only letters, digits and underscores, must contain at least
one letter, and must not begin with a digit. This can be written using Extended Backus-Naur Form
(EBNF) notation as follows:

letter ::= ’a’...’z’,’A’...’Z’
digit ::= ’0’...’9’
identifier ::= (’_’)* (letter) (letter | ’_’ | digit)*

[The variant of EBNF used above is defined in Section 6 of the XML 1.0 Recommendation14.]

14http://www.w3.org/TR/2000/REC-xml-20001006#sec-notation

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 18

2.4.2 Proper use of the CellML namespace

• A document must not contain elements or attributes in the CellML namespace that are not defined in
this specification.

[Documents containing unknown elements or attributes in the CellML namespace are not valid
CellML documents. Rules regarding the use of elements in the other namespaces defined in Ta-
ble 1 are given in the appropriate sections. Note that attributes without an explicit prefix declaration
are assumed to be in the same namespace as their parent element.]

2.4.3 Extension namespaces

• Although not explicitly stated throughout this specification, a document author may add extension
elements and extension attributes to any CellML element in a CellML document without affecting the
validity of the document.

[Note that attributes without an explicit prefix declaration are assumed to be in the same namespace
as their parent element.]

• For interoperability, elements in the CellML namespace should not be defined inside extension ele-
ments.

[Specifically, applications should not define important model structure, mathematics or metadata
information within extension elements, which other applications are free to ignore.]

• For interoperability, attributes in the CellML namespace should not be defined on extension elements.

2.4.4 Text nodes within CellML elements

• Any characters that occur immediately within elements in the CellML namespace must be either
space (#x20) characters, carriage returns (#xA), line feeds (#xD), or tabs (#x9).

[All of the elements in the CellML 1.1 namespace contain no text content. The characters listed above
correspond to the definition of whitespace given in Section 2.3 of the XML Recommendation15. Text
content may still be included in extension elements inside CellML elements.]

2.5 Rules for Processor Behaviour

2.5.1 Treatment of CellML identifiers

• CellML processing software must handle identifiers in a case-sensitive manner.

[Two CellML elements of the same type may be defined with identifiers of A and a. Processing
software is expected to match the identifiers in a case-sensitive manner when those elements are
referenced at other places in the document.]

2.5.2 Treatment of attribute namespaces

• CellML processing software must treat attributes without an explicit namespace declaration as if they
were in the same namespace as their parent element.

15http://www.w3.org/TR/2000/REC-xml-20001006#sec-common-syn

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 19

2.5.3 Treatment of extension namespaces

• CellML processing software may ignore extension elements and extension attributes.

[If the namespace is unrecognised, then software should probably alert the user to its presence. Polite
software should attempt to store non-CellML data so that it can write it out again when it exports the
document. Software should validate its own non-CellML data carefully when reading documents
from a non-trusted location.]

• CellML processing software may ignore the attributes and content of extension elements.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 21

3 Model Structure

3.1 Introduction

Any model can be described as a network of connections between self-contained components. A compo-
nent is a functional unit that may correspond to a physical compartment, event, or species or may be just a
convenient modelling abstraction. A component contains variables and mathematical relationships that ma-
nipulate those variables. Connections exchange information between components. A connection contains
mappings between variables in two components, allowing the value of a variable in one component to be
passed to a variable in the other component.

3.2 Basic Structure

3.2.1 Definition of a model

A model is declared in CellML with a <model> element. This is the usual root element for a CellML
document. The recommended best practice for specifying namespaces in a CellML document is described
in Section 2.2.3.

The <model> element has a name attribute that allows this model to be unambiguously referenced. A
<model> element may contain any number of the elements in the following list in any order. However,
the recommended best practice is for elements placed within the <model> element to appear in the order
given in the following list. This allows people to quickly find certain kinds of information within a CellML
document.

• <import model> — A modeller may import another valid CellML model, as described in Sec-
tion 9.

• <units> — A modeller can declare a set of units to use in the model, as described in Section 5.

• <component> — Components are the smallest functional units in a model. Each component may
contain variables that represent the key properties of the component and/or mathematics that describe
the behaviour of the portion of the system represented by that component.

• <group> — Groups allow the modeller to define logical and physical relationships between com-
ponents. Groups are defined using the <group> element, as discussed in Section 6.

• <connection> — Connections are used to connect components to each other and to map vari-
ables in one component to variables in another. Connections are defined using the <connection>
element, as discussed in Section 3.2.4.

The <model> element (and indeed any of the elements in a CellML document) may define metadata
to provide context for that object. This metadata might include documentation, citations from literature, or
a modification history for the current CellML object. Adding metadata to a CellML document is discussed
in detail in Section 8.

3.2.2 Definition of components

A model can be constructed from multiple components. However, recommended best practice is to assign
just one component to a model and connect all component-models in a supermodel. Creating a network of
models encourages the re-use of components. For instance, an electrophysiological supermodel of a cell
might be organised into component-models that represent various ion channels. All of the mathematics that
describe the behaviour of the L-type calcium channel would be defined in a single component representing
this particular ion channel. If a modeller wished to re-use the portion of the model representing the L-type

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 22

calcium channel in another model, he or she would only need to import this component-model into a second
supermodel. See Section 9 for more information on the import feature.

A <component> element is used to declare a CellML component. It must only be used inside a
<model> element.

A CellML <model> may contain any number of <component> elements. Each <component>
must have a name attribute, the value of which is a unique identifier for the component amongst all other
components within the current model. The value of the name attribute is used to reference the component
in other parts of the model, such as in connections and groups.

A <component> may contain any of the elements in the following list in any order. Again, recom-
mended best practice is for elements placed within the <component> element to appear in the order given
in the following list.

• <units> — A modeller can declare a set of units to use within the component, as described in
Section 5.

• <variable> — A component may contain any number of <variable> elements, which define
variables that may be mathematically related in the equation blocks contained in the component.
Variables are discussed in Section 3.2.3.

• <reaction> — A component may contain <reaction> elements, which are used to provide
chemical and biochemical context for the equations describing a reaction. It is recommended that
only one <reaction> element appear in any <component> element. The definition of reaction
information is described in Section 7.

• <mathml:math> — A component may contain a set of mathematical relationships between the
variables declared in this component. These equations are marked up using MathML, as discussed
in Section 4. The mathml prefix is used to indicate that the <math> element is in the MathML
namespace.

A <component> element is also a sensible place to define metadata, using the syntax presented in
Section 8.

The definitions of two <component> elements are included in the example described in Section 3.3.

3.2.3 Definition of variables

Models are usually developed to investigate the behaviour of a number of variables that have biological
significance. Each variable in the model belongs to a single component, which may contain equations that
modify the value of that variable. The value of a variable may be passed through connections into other
components. The variable must also be declared in these components, which can then use the value of the
variable in their own equations but must not modify it.

The <variable> element is used to declare a CellML variable. It can only be used inside a <component>
element. Variables must define a name attribute, the value of which must be unique across all variables in
the current component. The name of a variable is used when referencing variables inside connections (see
Section 3.2.4) and reactions (see Section 7). All variables must also define a units attribute. The value of
this attribute must correspond to one of the keywords in the CellML units dictionary or a user-defined unit,
as described in Section 5. Variables may define a units model attribute to instruct the processor where
to find the user-defined units. If a units model attribute is not specified, the value of the units attribute
must equal the value of the name attribute of a <units> element defined within the current component or
model. The units model attribute is further discussed in Section 9.

A <variable> element may also have the following attributes:

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 23

• initial value — This attribute provides a convenient means for specifying the value of a scalar
real variable when all independent variables in the model have a value of 0.0. Independent variables
are those with respect to which another variable is differentiated or integrated.

• public interface — This attribute specifies the interface exposed to components in the parent
and sibling sets (see below). The public interface must have a value "in", "out", or "none". The
absence of a public interface attribute implies a value of "none".

• private interface — This attribute specifies the interface exposed to components in the en-
capsulated set (see below). The private interface must have a value "in", "out", or "none". The
absence of a private interface attribute implies a value of "none".

The name of the initial value attribute is derived from the fact that, in a model with only one
independent variable, this would generally correspond to time, and so the value of the initial value
attribute sets the starting condition for a simulation which progressed from time equals 0.0. The initial
values of variables need not be set in the model definition at all. When multiple simulations are to be run
using the same model, initial and boundary conditions are most conveniently set in an external simulation
configuration file loaded separately by CellML processing software.

Whether or not a component may obtain the value of a variable in another component depends on the
public interface and private interface attributes on the variable declaration and on the place
of the two components in the encapsulation hierarchy. Encapsulation allows the modeller to hide a complex
network of components from the rest of the model and provides a single component as an interface to the
hidden network. Encapsulation effectively divides the network into layers, where connections between the
layers must only be made through the interface components.

The components to which any given component may connect can be divided into four distinct sets
with respect to any given component (the current component). The set of all components immediately
encapsulated by the current component is referred to as the encapsulated set. If the current component
is encapsulated, then the encapsulating component is referred to as the parent, and the set of all other
components encapsulated by the same parent is referred to as the sibling set. If the current component is
not encapsulated, then it has no parent and the sibling set consists of all other components in the model that
are not encapsulated. All other components, which are not available to make connections with the current
component, make up the hidden set. The encapsulation hierarchy and its effects on variable mapping are
described in Section 6.

When a variable is declared with either a public interface or private interface attribute
value of "in", then the value of that variable must be imported from another component. Otherwise, a
variable’s value must be set and modified in the current component. The variable is then said to belong to
or be owned by the current component.

Eventually, it will be possible to specify the temporal and/or spatial variation of a variable’s value using
FieldML16. The capability to include FieldML is still under development. At the present time, all variables
must have scalar real values.

3.2.4 Definition of connections

Connections provide the mechanism for mapping variables declared within one component to variables in
another component, allowing information to be exchanged between the various components in the network.
The mapping of variables involves the transfer of a variable’s value from one component to another, a
process which may involve a conversion to ensure the units match. (More information on units conversion
can be found in Section 5.)

The complete set of variable mappings between any two components constitutes a connection. Only one
connection may be created between any given pair of components in a model. Each connection references

16http://www.physiome.org.nz/sites/physiome/fieldml/pages/index.html

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 24

the two components involved in the connection, and then maps variables from each of the components
together. The interface attributes of each pair of variables must be compatible — an "out" variable in
one component’s interface must map to an "in" variable in the other component’s interface. The direction
of each mapping is determined by the value of the public interface and private interface
attributes on the two variables: the value is always passed from the variable with an interface value of
"out" to the variable with an interface value of "in". The value of a variable declared with an interface
value of "out" may be passed out to any number of variables in other components declared with interface
values of "in". The component to which a variable belongs is found by tracing the variable back from
"in" to "out" interfaces, following the model’s connections.

The <connection> element is used to declare a CellML connection. It can only appear inside a
<model> element.

A <connection> element must contain exactly one <map components> element, which is used
to reference the two components involved in the connection. Each <map components> element must
define component 1 and component 2 attributes, the values of which are the names of the components
being referenced. The <map components> element may also define model 1 and model 2 attributes
to clarify in which models components 1 and 2, respectively, will be found. If the attributes model 1 and
model 2 are not specified, the components referenced by attributes component 1 and component 2
must be defined within the current <model> element. The model 1 and model 2 attributes are discussed
in more detail in Section 9.

A <connection> element must also contain one or more <map variables> elements, which
are used to reference the variables being mapped between the two components in the connection. Each
<map variables> element must define variable 1 and variable 2 attributes, the values of which
are equal to the names of variables defined in the components referenced by the component 1 and
component 2 attributes on the <map components> element, respectively. It is not necessary for the
variables that are to be mapped to each other to have the same name, although this will typically be the case.

The CellML example discussed in Section 3.3 demonstrates the definition of a <connection> ele-
ment.

3.3 Examples

Figure 4 contains a portion of the CellML description of the Hodgkin-Huxley squid axon model published
in 1952. The excerpt contains the definitions of the components corresponding to the membrane and the
sodium channel, and the connection between the two components. Most of the complexity from the full
model definition has been left out for conciseness and clarity. This example is only used to demonstrate the
standard use of the <component>, <variable>, and <connection> elements.

The membrane component declares six variables, which are divided into three categories. The first
variable is called V, and it represents the membrane voltage in the model. It has a public interface
attribute value of "out", which indicates that the variable “belongs” to this component and that its value
may be obtained by other components in the model via connections. It references a units definition by the
name of millivolt (this definition is not included here) and is given an initial value of -75.0 millivolts.

The subsequent four variables are time, i Na (sodium current), i K (potassium current) and i L
(leakage current). They are all declared with a public interface attribute value of "in", which
indicates that their values are obtained from other components via connections.

Finally, a variable C (capacitance) is declared. This <variable> element defines neither a public interface
or a private interface attribute. Both of these attributes therefore assume the default value of
"none", which means that the variable belongs to the current component and is not visible to other com-
ponents in the model.

After the variable declarations, a <math> element in the MathML namespace is used to define an
equation relating V to the other variables. Only the values of the variables belonging to a component

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 25

<model
name="hodgkin_huxley_model_excerpt"
xmlns="http://www.cellml.org/cellml/1.1#"
xmlns:cellml="http://www.cellml.org/cellml/1.1#"
xmlns:cmeta="http://www.cellml.org/metadata/1.0#">

<!--
Units definitions which could be referenced from the <variable> elements
would typically be inserted here. Units are discussed in Section 5.

-->

<component name="membrane">
<!-- the following variable is used in other components -->
<variable

name="V" public_interface="out"
initial_value="-75.0" units="millivolt" />

<!-- the following variables are imported from other components -->
<variable name="time" public_interface="in" units="millisecond" />
<variable name="i_Na" public_interface="in" units="microA_per_cm2" />
<variable name="i_K" public_interface="in" units="microA_per_cm2" />
<variable name="i_L" public_interface="in" units="microA_per_cm2" />

<!-- the following variable is only used internally -->
<variable name="C" initial_value="1.0" units="microF_per_cm2" />

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="membrane_voltage_diff_eq"><eq />

<apply><diff />
<bvar><ci> time </ci></bvar>
<ci> V </ci>

</apply>
<apply><divide />

<apply><minus />
<apply><plus />
<ci> i Na </ci>
<ci> i K </ci>
<ci> i L </ci>

</apply>
</apply>
<ci> C </ci>

</apply>
</apply>

</math>
</component>

<component name="sodium_channel">
<!-- the following variables are used in other components -->
<variable name="i_Na" public_interface="out" units="microA_per_cm2" />

<!-- the following variables are imported from other components -->
<variable name="time" public_interface="in" units="millisecond" />
<variable name="V" public_interface="in" units="millivolt" />

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_Na_calculation"><eq />

<ci> i Na </ci>
... <!-- a function of V & time -->

</apply>
</math>

</component>

<connection>
<map_components component_1="membrane" component_2="sodium_channel" />
<map_variables variable_1="V" variable_2="V" />
<map_variables variable_1="i_Na" variable_2="i_Na" />

</connection>

</model>

FIGURE 4: A small portion of the CellML description of the Hodgkin-Huxley squid axon model from 1952.
This excerpt contains the definition of the components corresponding to the membrane and the sodium chan-
nel, and the connection between them. Much detail has been omitted, but this example clearly demonstrates

the relationship between the <component>, <variable> and <connection> elements.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 26

may be mathematically modified in that component. The equation included in Figure 4 is the well known
differential equation from the Hodgkin Huxley model:

d V

d time
=

−(i Na + i K + i L)

C
(1)

The sodium channel component declares three variables, all of which represent quantities that
were also declared in the membrane component. The i Na variable declared in this component has a
public interface attribute value of "out", indicating that the sodium current belongs to this com-
ponent. The value of the sodium current is calculated in this component, although the actual math has been
omitted.

Finally, a <connection> element references the membrane and sodium channel components
using a <map components> element, and maps the V and i Na variables in each component together, us-
ing two <map variables> elements. The value of the variable 1 attribute on each <map variables>
element references the corresponding variable in the membrane component, since this is the component
referenced by the component 1 attribute on the <map components> element. Similarly, the values of
the variable 2 attributes reference variables in the sodium channel component.

3.4 Rules for CellML Documents

The following are the rules for using the <model>, <component>, <variable>, <connection>,
<map components>, and <map variables> elements.

3.4.1 The <model> element

1. Allowed use of the <model> element

• A <model> element must contain only the following elements, which may appear in any order:

– <import model>, <units>, <component>, <group>, and <connection> ele-
ments in the CellML namespace,

– <RDF> elements in the RDF namespace.

[The recommended best practice is to define the child elements in the CellML namespace in the
order stated above.]

• Each <model> element must define a name attribute.

2. Allowed values of the name attribute

• The value of the name attribute must be a valid CellML identifier as discussed in Section 2.2.1.

3.4.2 The <component> element

1. Allowed use of the <component> element

• A <component> element must contain only the following elements, which may appear in any
order:

– <units>, <variable> and <reaction> elements in the CellML namespace,
– <math> elements in the MathML namespace,
– <RDF> elements in the RDF namespace.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 27

[The recommended best practice is to define the child elements in the CellML and MathML
namespaces in the order stated above. Note that a <component> element must not appear
inside another <component> element. Such nesting could be intended to indicate a logical
encapsulation relationship, a geometric containment relationship, or some other relationship
between the two components. There is no reason to assume that the nesting hierarchy produced
for one type of relationship would be consistent with the hierarchy produced for other types
of relationships. Therefore, CellML defines these relationships using the <group> element,
rather than nesting of <component> elements.]

• Each <component> element must define a name attribute.

2. Allowed values of the name attribute

• The value of the name attribute must be a valid CellML identifier as discussed in Section 2.2.1.

• The value of the name attribute must be unique across all <component> elements contained
in the parent <model> element.

3.4.3 The <variable> element

1. Allowed use of the <variable> element

• A <variable> element must contain only the following elements:

– <RDF> elements in the RDF namespace.

• Each <variable> element must define a name attribute and a units attribute. It may also
define units model, public interface, private interface, and initial value
attributes.

2. Allowed values of the name attribute

• The value of the name attribute must be a valid CellML identifier as discussed in Section 2.2.1.

• The value of the name attribute of a <variable> element must be unique across all <variable>
elements contained in the same <component> element.

[Two variables in the same component must not have the same name. However, two variables
in different components may have the same name, and a variable may have the same name as its
parent component.]

3. Allowed values of the units attribute

• The value of the units attribute must either be one of the keywords defined in the standard
dictionary or the value of the name attribute on a <units> element defined in the CellML
model referenced by the units model attribute on the current <variable> element.

[The dictionary and the units element are described in Section 5.]

4. Allowed values of the units model attribute

• If present, the value of the units model attribute must equal the value of the xlink:title
attribute of an <import model> element contained within the current <model> element.

[In this rule the use of the xlink namespace prefix indicates that the title attribute is in the
XLink namespace.]

• The absence of the units model attribute implies the current model.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 28

5. Allowed values of the public interface attribute

• If present, the value of the public interface attribute must be "in", "out", or "none".

• If not present, its value defaults to "none".

6. Allowed values of the private interface attribute

• If present, the value of the private interface attribute must be "in", "out", or "none".

• If not present, its value defaults to "none".

7. Proper use of the public interface and private interface attributes

• A <variable> element must not define both public interface and private interface
attributes with values equal to "in".

[A variable’s value must only be obtained via one mapping.]

8. Allowed values of the initial value attribute

• If present, the value of the initial value attribute may be a real number or the value of the
name attribute of a <variable> element declared in the current component.

• The absence of an initial value attribute implies nothing.

[The absence of this attribute would usually mean either that the variable does not need an initial
value or that this value will be supplied in a parameter file or by the user at the time simulations
using the model are run.]

9. Proper use of the initial value attribute

• An initial value attribute must not be defined on a <variable> element with a public interface
or private interface attribute with a value of "in".

[These variables receive their value from variables belonging to another component.]

3.4.4 The <connection> element

1. Allowed use of the <connection> element

• A <connection> element must contain only the following elements, which may appear in
any order:

– <map components> and <map variables> elements in the CellML namespace,
– <RDF> elements in the RDF namespace.

• Each <connection> element must contain exactly one <map components> element.

• Each <connection> element must contain at least one <map variables> element.

[It does not make sense to define a connection that does not map variables together. This
rule prevents software from using empty connections to imply information not defined in this
specification.]

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 29

3.4.5 The <map components> element

1. Allowed use of the <map components> element

• A <map components> element must contain only the following elements:

– <RDF> elements in the RDF namespace.

• Each <map components> element must define a component 1 attribute and a component 2
attribute. It may also define model 1 and model 2 attributes.

2. Allowed values of the component 1 attribute

• The value of the component 1 attribute must equal the value of the name attribute of a
<component> element contained within the CellML model referenced by the model 1 at-
tribute on the current <map components> element.

3. Allowed values of the component 2 attribute

• The value of the component 2 attribute must equal the value of the name attribute of a
<component> element contained within the CellML model referenced by the model 2 at-
tribute on the current <map components> element.

4. Allowed values of the model 1 attribute

• If present, the value of the model 1 attribute must equal the value of the name attribute of an
<import model> element contained within the current <model> element.

• The absence of the model 1 attribute implies the current model.

5. Allowed values of the model 2 attribute

• If present, the value of the model 2 attribute must equal the value of the name attribute of an
<import model> element contained within the current <model> element.

• The absence of the model 2 attribute implies the current model.

6. Proper use of the component 1, component 2, model 1, and model 2 attributes

• The combined values of the component 1 and model 1 attributes must not equal the com-
bined values of the component 2 and model 2 attributes.

[A connection must link two different components.]

• Each <map components> element contained within <connection> elements that are con-
tained within a given<model> element must define a unique pair of (component 1, model 1)
and (component 2, model 2) attribute values.

[There can only be one connection between any two components in a network. This prevents
setting up inconsistent, circular, or duplicate variable mappings between any two components in
the network. However, it does not prevent a model author from creating inconsistent mathemat-
ical relationships between the variables.]

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 30

3.4.6 The <map variables> element

1. Allowed use of the <map variables> element

• A <map variables> element must contain only the following elements:

– <RDF> elements in the RDF namespace.

• Each <map variables> element must define a variable 1 attribute and a variable 2
attribute.

2. Allowed values of the variable 1 attribute

• The value of the variable 1 attribute must equal the value of the name attribute of a <variable>
element contained in the <component> element referenced by the component 1 attribute
on the <map components> element within the current <connection> element.

3. Allowed values of the variable 2 attribute

• The value of the variable 2 attribute must equal the value of the name attribute of a <variable>
element contained in the <component> element referenced by the component 2 attribute
on the <map components> element within the current <connection> element.

4. Proper use of the <map variables> element to map variables to each other

[The rules for mapping a variable to other variables depend on the encapsulation hierarchy of the com-
ponent that owns the variable. This hierarchy divides the rest of the components in the model into par-
ent, sibling, encapsulated, and hidden sets, as described in Section 3.2.3. The public interface
attribute defines the availability of a variable to the parent component and components in the sibling
set. The private interface attribute defines the availability of a variable to components in the
encapsulated set. Variables are not available to components in the hidden set.]

• Variables with a public interface or private interface attribute value of "in"
must be mapped to variables with a public interface or private interface attribute
value of "out".

• A variable with either a private interface or public interface attribute value of
"in" must be mapped to no more than one other variable in the model.
[Note that a similar restriction does not apply to variables with interface values of "out". An
output variable can be mapped to multiple input variables in various components in the current
model.]

• A variable with a public interface attribute value of "in" must be mapped to a single
variable owned by a component in the sibling set, provided the target variable has a public interface
attribute value of "out", or to a single variable owned by the parent component, provided the
target variable has a private interface attribute value of "out".

• A variable with a public interface attribute value of "out" may be mapped to variables
owned by components in the sibling set, provided the target variables have public interface
attribute values of "in". It may also be mapped to variables owned by the parent component,
provided the target variables have private interface attribute values of "in".

• A variable with a private interface attribute value of "in" may be mapped to a sin-
gle variable owned by a component in the encapsulated set, provided the target variable has a
public interface attribute value of "out".

• A variable with a private interface attribute value of "out"may be mapped to variables
owned by components in the encapsulated set, provided the target variables have public interface
attribute values of "in".

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 31

3.5 Rules for Processor Behaviour

3.5.1 Mapping of variables

For interoperability, CellML processing software should take into account the units definitions referenced
by any two variables that are mapped together. If the units references are not equivalent, as defined in Ap-
pendix C.2.1, then a conversion may be required. An algorithm for performing this conversion is proposed
in Appendix C.3.5.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 33

4 Mathematics

4.1 Introduction

CellML allows modellers to unambiguously specify the underlying mathematics of a cellular model. Model
components may contain mathematical expressions that manipulate the values of variables that belong to
them. These expressions are also free to use (but must not modify) the values of any other variable declared
in those components.

Mathematical expressions are embedded in CellML documents using Mathematical Markup Language
2.0 (MathML)17, an XML-based language that encodes the underlying structure of a mathematical expres-
sion. CellML uses a subset of the elements from MathML 2.0, known as the content markup element set,
which includes several deprecated elements from MathML 1.0.

CellML 1.1 does not require processing software to implement support for scripting. If software chooses
to do so, some recommendations on the use of scripting are given in Appendix B.

4.2 Basic Structure

4.2.1 Definition of mathematics

All mathematical expressions defined using MathML must be placed inside a <mathml:math> element.
<mathml:math> elements must only be defined in <cellml:component> or <cellml:role> el-
ements. The mathml and cellml namespace prefixes are used throughout this section to indicate that ele-
ments are in the MathML and CellML namespaces, respectively. The <cellml:role>,<cellml:var-
iable ref> and <cellml:reaction> elements mentioned in this section are described in detail in
Section 7 of this specification.

<mathml:math> elements that occur as child elements of <cellml:component> elements can
be used to define arbitrary expressions relating the variables declared in that component. A mathemati-
cal expression may make use of any variable declared within the current component by placing the vari-
able’s name within a <mathml:ci> element. Expressions must only modify the values of variables that
belong to that component. Variables that belong to a component are those that are not declared with a
public interface or private interface attribute value of "in".

<mathml:math> elements that occur as child elements of <cellml:role> elements (these are de-
fined within<cellml:variable ref> elements, which are in turn defined within<cellml:reaction>
elements) can be used to define expressions that modify the values of specific variables in specific ways.
These expressions may make use of any variable declared in the current component but must only mod-
ify the value of the variable referenced by the ancestor <cellml:variable ref> element, subject to
further limitations that are described in Section 7.2.

CellML processing software must interpret MathML elements according to the semantics defined in the
MathML 2.0 Recommendation18. However, CellML 1.1 does define some restrictions on, and additions to,
the MathML syntax. These are covered in the subsequent sections.

4.2.2 MathML’s presentation and content markup elements

The complete set of elements defined in the MathML 2.0 Recommendation19 is split into two principal
sub-vocabularies: the presentation markup and content markup elements. The presentation markup ele-
ments describe the visual rendering of mathematical expressions and objects. The content markup elements
specify the underlying meaning of a mathematical expression or object, without regard to its presentation.

17http://www.w3.org/Math
18http://www.w3.org/TR/2001/REC-MathML2-20010221
19http://www.w3.org/TR/2001/REC-MathML2-20010221

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 34

CellML is used to describe the structure and mathematics of cellular models. For this reason, valid
CellML documents must only contain content markup elements within a <mathml:math> element. There
is one exception: model authors may associate rendering information with a particular expression by placing
MathML presentation markup elements inside a <mathml:annotation-xml> element. CellML pro-
cessing software may ignore the contents of <mathml:annotation> and <mathml:annotation-xml>
elements.

An example demonstrating the embedding of MathML content and presentation markup elements in a
CellML document is presented in Section 4.3.

4.2.3 The CellML subset of MathML content elements

Valid CellML documents may contain any MathML content markup elements within a <mathml:math>
element, as long as the arrangement of these elements follows the rules defined in the MathML 2.0 Recom-
mendation20. However, it is anticipated that it will be some time before software is able to interpret all of
these elements. To encourage interoperability, this section defines a subset of the MathML content markup
elements known as the CellML subset. CellML documents that only contain content markup elements from
the CellML subset are known as valid CellML subset documents. CellML processing software may only
call itself CellML conformant if it is able to correctly interpret all of the MathML elements in the CellML
subset according to the semantics defined in the MathML 2.0 Recommendation.

The complete list of MathML elements in the CellML subset is given in Figure 5. Many of the elements
in the CellML subset are included to provide facilities for the definition of algebraic and ordinary differential
equations. Others (such as the trigonometric operators) have been included because they are reasonably
straightforward to translate to computer code.

4.2.4 Ordering of expressions

The mathematics in a model defined using CellML 1.1 consist of a static system of expressions, which are
distributed over a network of components. CellML does not define the order of evaluation of equations, as
this is simulation information rather than model information.

4.2.5 Scope of expressions

Within a CellML model, all expressions are assumed to have unlimited scope with respect to the indepen-
dent variables unless explicitly stated using MathML’s <piecewise> construct or some other form of
conditional expression. This means that if the initial conditions for a variable, the value of which is deter-
mined by a differential equation, are to be specified using an equality, the two equations should have their
scope limited so that they do not contradict each other.

4.2.6 Associating units with numbers

To ensure that models are robust and portable, all variables and numbers that occur in mathematical ex-
pressions within a CellML document must have units associated with them. CellML’s units framework is
introduced in Section 5 and the association of units with variables is presented in Section 3.2.3. The asso-
ciation of units with numbers in equations requires an extension to MathML. This can be done in a manner
consistent with the association of units with variables and with application-specific extensions to CellML
by adding a units attribute in the CellML namespace to the <mathml:cn> element, which encloses all
numbers. The example presented in Section 4.3 demonstrates this.

20http://www.w3.org/TR/2001/REC-MathML2-20010221

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 35

• token elements

<cn>, <ci>

• basic content elements

<apply>, <piecewise>, <piece>, <otherwise>

• relational operators

<eq>, <neq>, <gt>, <lt>, <geq>, <leq>

• arithmetic operators

<plus>, <minus>, <times>, <divide>, <power>, <root>, <abs>, <exp>, <ln>,
<log>, <floor>, <ceiling>, <factorial>

• logical operators

<and>, <or>, <xor>, <not>

• calculus elements

<diff>

• qualifier elements

<degree>, <bvar>, <logbase>

• trigonometric operators

<sin>, <cos>, <tan>, <sec>, <csc>, <cot>, <sinh>, <cosh>, <tanh>, <sech>,
<csch>, <coth>, <arcsin>, <arccos>, <arctan>, <arccosh>, <arccot>,
<arccoth>, <arccsc>, <arccsch>, <arcsec>, <arcsech>, <arcsinh>, <arctanh>

• constants

<true>, <false>, <notanumber>, <pi>, <infinity>, <exponentiale>

• semantics and annotation elements

<semantics>, <annotation>, <annotation-xml>

FIGURE 5: The CellML subset of MathML content markup elements, grouped according to function. All
elements in this figure are in the MathML namespace.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 36

4.2.7 Definition of scripts

CellML 1.1 does not define a standard method by which model authors can embed scripts in CellML doc-
uments in a portable way. It is anticipated that this functionality will be defined in a subsequent version of
CellML. However, the use of scripts in CellML is strongly discouraged. CellML is aimed at specifying a
model in terms of its most basic governing equations. Wherever possible, mathematical equations should
be used to specify the changing behaviour of a model’s state variables.

If implementors do decide to add scripting functionality to CellML documents, these scripts must be
defined within elements placed in an application-specific extension namespace. Implementors are advised
to follow the recommendations on the best practices for embedding and executing scripts described in
Appendix B. The key recommendations are summarised in the following list:

• For interoperability, scripts should be defined using ECMAScript.

• The <mathml:csymbol> element should be used from within MathML markup to call scripts
defined using a non-MathML syntax. These elements must define a definitionURL that identifies
the element containing the script and an encoding attribute specifying the scripting language used.

• Function names (or the identifier used to reference a script) should be valid CellML identifiers, as
defined in Section 2.2.1.

• The content of a <mathml:csymbol> element should be a human-readable identifier for the script,
preferably the function name.

• Functions must be side-effect free. That is, a function must not assign values to variables that are not
local to that function. In particular, functions must not alter the values of their arguments or global
variables.

4.3 Examples

The CellML fragment in Figure 6 demonstrates how MathML can be employed within CellML to define
mathematical expressions. This fragment is part of the definition of a component that represents the be-
haviour of the n gate from the potassium channel in the Hodgkin-Huxley squid axon model of 1952. The
component contains three units definitions (with syntax defined in Section 5), two variable declarations
(with syntax defined in Section 3), and a block of MathML that defines an expression calculating the alpha
variable of the n gate as well as the rendering of this equation, which is given in Equation (2).

alpha n = 1.0
0.01(V + 10.0)

exp(0.1(V + 10.0)) − 1.0
(2)

Content that isn’t defined using the MathML content markup elements can be associated with a MathML
expression using the <mathml:semantics>,<mathml:annotation> and <mathml:annotation-xml>
elements. The first child of a <mathml:semantics> element is the expression to be annotated, and the
subsequent <mathml:annotation> and <mathml:annotation-xml> elements contain character
data and XML annotations, respectively. In the CellML fragment in Figure 6, the expression of interest
has been annotated with rendering information encoded using the MathML presentation markup elements.
The MathML presentation elements are very flexible and it is possible to produce the same rendering of an
equation in many ways — the choice of elements in Figure 6 is somewhat arbitrary.

The <mathml:apply> element at the top level of the expression defines an id attribute, which can be
used to associate further metadata with the expression. The linking of metadata with elements in a CellML
document is described in more detail in Section 8.2.

All of the <mathml:cn> elements in the equation define cellml:units attributes, which associate
a units definition with the number delimited by the <mathml:cn> element. The inclusion of units in the

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 37

<component
name="potassium_channel_n_gate"
xmlns="http://www.cellml.org/cellml/1.1#"
xmlns:cellml="http://www.cellml.org/cellml/1.1#"
xmlns:cmeta="http://www.cellml.org/metadata/1.0#">

<units name="per_millisecond">
<unit prefix="milli" units="second" exponent="-1" />

</units>
<units name="millivolt">

<unit prefix="milli" units="volt" />
</units>
<units name="per_millivolt">

<unit prefix="milli" units="volt" exponent="-1" />
</units>

<variable name="alpha_n" units="per_millisecond" />
<variable name="V" public_interface="in" units="millivolt" />

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="alpha_n_calculation"><eq />
<ci> alpha n </ci>
<apply><times />

<cn cellml:units="per_millisecond"> 1.0 </cn>
<apply><divide />

<apply><times />
<cn cellml:units="per_millivolt"> 0.01 </cn>
<apply><plus />
<ci> V </ci>
<cn cellml:units="millivolt"> 10.0 </cn>

</apply>
</apply>
<apply><minus />

<apply><exp />
<apply><times />

<cn cellml:units="per_millivolt"> 0.1 </cn>
<apply><plus />

<ci> V </ci>
<cn cellml:units="millivolt"> 10.0 </cn>

</apply>
</apply>

</apply>
<cn cellml:units="dimensionless"> 1.0 </cn>

</apply>
</apply>

</apply>
</apply>
<annotation-xml encoding="MathML-Presentation">
<mrow>

<mi> alpha n </mi><mo> = </mo><mn> 1.0 </mn>
<mfrac>

<mrow>
<mn> 0.01 </mn><mo> (</mo>
<mi> V </mi><mo> + </mo><mn> 10.0 </mn>
<mo>) </mo>

</mrow>
<mrow>

<mo>exp</mo>
<mo> (</mo><mn> 0.1 </mn><mo> (</mo>
<mi> V </mi><mo> + </mo><mn> 10.0 </mn>
<mo>) </mo><mo>) </mo>
<mo> - </mo>
<mn> 1.0 </mn>

</mrow>
</mfrac>

</mrow>
</annotation-xml>

</math>
</component>

FIGURE 6: Part of the definition of a component that represents the behaviour of the n gate from the potassium
channel in the Hodgkin-Huxley squid axon model of 1952. See text for more details.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 38

equation allows CellML processing software to check that the dimensions of the terms in an equation are
consistent, as discussed in Section 5. The presence of the unit scale factor on the right hand side of the
equation is needed for the equation to have consistent dimensions.

4.4 Rules for CellML Documents

4.4.1 The <mathml:math> element

1. Allowed use of the <mathml:math> element

• The <mathml:math> element must only appear as a child of the following elements in the
CellML namespace: <cellml:component> and <cellml:role>.

[In this and subsequent rules, the use of the mathml and cellml namespace prefixes in-
dicates that elements and attributes are in the MathML and CellML namespaces, respectively.
The <mathml:math> element may appear inside elements in the RDF and CellML Metadata
namespaces if permitted by the relevant specifications, and may be used inside extension ele-
ments. When MathML elements occur within extension elements, CellML processing software
is free to ignore them.]

• All elements in the MathML namespace that are within a <mathml:math> element, and not
within a <mathml:annotation> or <mathml:annotation-xml> element, must be
taken from the complete set of MathML content markup elements, as defined in Section 4.4 of
the MathML 2.0 Recommendation21, with the addition of the <mathml:logbase> element.

[CellML only makes use of the content markup elements from MathML. However presentation
markup elements may be used within the annotation elements to associate rendering information
with expressions. The <mathml:logbase> element was erroneously omitted from the list of
content markup elements in Section 4.4 of the MathML 2.0 Recommendation.]

• The content of a <mathml:math> element must conform to the MathML 2.0 Recommendation22

from the W3C.

• For interoperability, all elements in the MathML namespace that are within a <mathml:math>
element, and not within a <mathml:annotation> or <mathml:annotation-xml> el-
ement should be taken from the CellML subset of MathML content markup elements defined in
Figure 5.

[The CellML subset is discussed further in Section 4.2.3. Note that this is an interoperability
recommendation and not a firm rule.]

4.4.2 The <mathml:ci> element

1. Allowed use of the <mathml:ci> element

• After leading and trailing whitespace is removed, the content of a <mathml:ci> element must
match the value of the name of a variable declared within the current component.

[The <mathml:ci> element is used to reference variables from inside equations. Whitespace
may be added before and/or after a variable’s name to make the MathML more readable. The
handling of whitespace in MathML is described in more detail in Section 2.4.6 of the MathML
2.0 Recommendation23.]

21http://www.w3.org/TR/2001/REC-MathML2-20010221/chapter4.html#contm elem
22http://www.w3.org/TR/2001/REC-MathML2-20010221
23http://www.w3.org/TR/2001/REC-MathML2-20010221/chapter2.html#fund collapse

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 39

4.4.3 The <mathml:cn> element

1. Allowed use of the <mathml:cn> element

• A <mathml:cn> element must define a cellml:units attribute.

[All bare numbers in MathML content markup are enclosed in a <mathml:cn> element in
the MathML namespace.]

2. Allowed values of the cellml:units attribute

• The value of the cellml:units attribute must be taken from the standard dictionary of units
given in Section 5.2.1, or be the value of the name attribute on a <cellml:units> element
defined in the current <cellml:component> or <cellml:model> element.

4.4.4 Modification of variables

• A mathematical expression defined using MathML must only modify the values of variables that
belong to the current component.

[Variables that belong to a component are those that are not declared with a public interface
or private interface attribute value of "in".]

4.5 Rules for Processor Behaviour

4.5.1 Ordering of expressions

CellML processing software must not assume that the ordering of expressions within a CellML document
has any significance.

4.5.2 Scope of expressions

CellML processing software must make no assumptions about the scope or domain of a mathematical ex-
pression defined within a model. Unless explicitly stated, all expressions hold for any and all combinations
of independent variables.

4.5.3 Treatment of annotations

CellML processing software must assume that the content of the first child of a <mathml:semantics>
element defines an expression describing the mathematical behaviour of the model. CellML processing
software may ignore the content of <mathml:annotation> and <mathml:annotation-xml> el-
ements.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 41

5 Units

5.1 Introduction

One of the key features ensuring robustness and re-usability of CellML components and models is the
requirement that units be associated with all variables and numbers in a CellML document. This allows
components and models that declare variables with different units to be connected, as long as variables
that are mapped to one another have the same dimensions. For instance, it is possible to map a variable
declared with units of “pound/foot” to a variable declared with units of “kilogram/metre”, but not to a
variable declared with units of “mole/litre” or “kilogram-squared/metre”. The explicit declaration of units
also allows CellML processing software to check the consistency of each equation in a model.

5.2 Basic Structure

5.2.1 Dictionary of standard units

CellML provides a dictionary of standard units that may be used in variable declarations or attached to bare
numbers in mathematics. References to these units should make use of the actual name of the units, rather
than the standard abbreviation, thus avoiding confusion between units (e.g., metre) and prefixes (e.g., milli).
The full list of units that any CellML processing application is expected to recognise is given in Table 2. The
keywords in the table comprise the SI base units, the SI derived units with special names and symbols, and
some additional units commonly used in the types of biological models likely to be defined using CellML.

ampere farad katal lux pascal tesla
becquerel gram kelvin meter radian volt
candela gray kilogram metre second watt
celsius henry liter mole siemens weber
coulomb hertz litre newton sievert
dimensionless joule lumen ohm steradian

TABLE 2: The dictionary of units keywords that CellML processing applications are expected to recognise.
Base SI units are printed in bold text, derived SI units are printed in plain text, and additions to the standard

units defined purely for the convenience of model authors are italicized.

The SI base units are the foundation of the units system in CellML. The conversion of a variable’s value
between two sets of units involves the expansion of all units definitions to linear combinations of the SI
base units and user-defined base units (described in Section 5.2.3). The list of SI base and derived units is
taken from The International System of Units (SI)24, including the Year 2000 Supplement25. The American
spellings of meter and liter are taken from the NIST Guide for the Use of the International System
of UNITS (SI)26. The SI standard defines the mathematical relationships between the SI derived units and
the SI base units. These relationships are given in the right hand column of Table 3 in the Year 2000
Supplement, with the exception of celsius, which is related to kelvin as described in Section 2.1.1.5
of the SI standard.

The CellML units dictionary includes four non-SI units definitions for the convenience of modellers:
dimensionless, gram, liter and litre. The only unfamiliar name on this list is dimensionless, which is used to

24http://www.bipm.fr/pdf/si-brochure.pdf
25http://www.bipm.fr/pdf/si-supplement2000.pdf
26http://physics.nist.gov/Pubs/SP811/contents.html

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 42

indicate that a number or variable has no units associated with it. The mathematical relationships between
gram and litre and the base SI units are given in Section 5.2.5.

5.2.2 User defined units

CellML also provides a facility whereby new units can be defined in terms of the units provided in the
dictionary. This functionality allows the definition of units which are expressed as a scaled version of other
units (as is the case for most imperial units), the definition of units which are made up of the product of
other units, and even the creation of units that require an offset, such as degrees Fahrenheit. This allows
model authors to work in whatever set of units they feel most comfortable, while still ensuring that their
models can be integrated with those of other authors using other units.

New units are defined using the <units> element, which may be placed inside both <model> and
<component> elements. When a <units> element is placed inside the <model> element, the units
definition may be referenced from within any component in the model. When a <units> element is placed
inside a <component> element, the units definition may only be referenced from within that component.

Each units element must define a name attribute, which is used to reference the units definition else-
where. The value of the name attribute must be unique across all <units> elements in the <model> or
<component> element in which it is defined. If the value of the name attribute of a <units> element
defined inside a <component> element matches the value of the name attribute on a <units> element
defined inside the parent <model> element, then it will redefine the units, and all references to these units
within the <component> element refer to the new definition. Model authors must not redefine any of
the standard units. Therefore, the value of the name attribute must not equal one of the names from the
standard units dictionary in Table 2.

A <units> element may also define a base units attribute, the associated behaviour of which is
discussed in Section 5.2.3. A <units> element may contain a set of <unit> elements that reference
units from the dictionary or some previously defined units.

A <unit> element must not contain any elements in the CellML namespace, but may have up to five
attributes. The units attribute is the only one that is required. It is used to set the base quantity for
the current <unit> element, and its value must correspond to a keyword from the standard CellML units
dictionary or to the value of the name attribute of a <units> element in the current component or model
or in an imported model. If the referenced units are found in an imported model the <unit> element must
be further clarified with a units model attribute. The units model attribute is discussed in detail in
Section 9.

The definition of new units in terms of subunits may require the use of some combination of the optional
offset, prefix, exponent, and multiplier attributes.

A multiplier attribute can be used to pre-multiply the quantity to be converted by any real scale
factor. For instance, a multiplier of 0.45359237 is used to define a pound in terms of a kilogram. The
multiplier attribute has a default value of "1.0"

The offset attribute is used to represent the addition of a constant in the transformation between the
current units and the base units. This should only be necessary for the definition of temperature scales. For
instance, an offset attribute value of "32.0" is needed to define Fahrenheit in terms of Celsius. The
offset attribute has a default value of "0.0".

The prefix attribute can be used to indicate a scale for the referenced units. It is included primarily
for the convenience of modellers who want to define units that differ from another units definition only by
an SI scale factor. Its value must be from the standard set of CellML prefix names given in Table 3 or be an
integer, in which case the units are pre-multiplied by 10 to the power of this number. The default value of
the prefix attribute is "0" (the referenced units are scaled by a factor of one).

The scale factor described by the prefix attribute and the units referenced by the units attribute
are raised to a power equal to the value of the exponent attribute. The value of the exponent attribute

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 43

name factor name factor

yotta 1024 deci 10−1

zetta 1021 centi 10−2

exa 1018 milli 10−3

peta 1015 micro 10−6

tera 1012 nano 10−9

giga 109 pico 10−12

mega 106 femto 10−15

kilo 103 atto 10−18

hecto 102 zepto 10−21

deka 101 yocto 10−24

TABLE 3: The set of names that may be used in the prefix attribute on a <unit> element and the corre-
sponding scale factors that will pre-multiply the unit.

must be a floating point number, and is typically an integer. The exponent attribute has a default value of
"1.0". Note that an exponent attribute value of "0.0" has the effect of removing the parent <unit>
element from the current units definition.

A simple units definition occurs when units are defined as a linear function of some previously defined
simple units or base units. In a simple units definition, a <units> element contains only a single child
<unit> element, that <unit> element has an exponent attribute value of "1.0", and the units defini-
tion referenced by the units attribute is one of the SI or user-defined base units or is itself a simple units
definition. These are the only conditions under which a <unit> element may define an offset attribute
with a value other than "0.0". The formula that expresses how the old units (referenced by the value of
the units attribute on the <unit> element) are transformed into the new units (defined by the value of
the name attribute on the parent <units> element) is given below.

xnew [Units] = (multiplier prefix)

[

Units
units

]

xold [units] + offset [Units] (3)

Terms in square brackets represent the units associated with values in the expression, which are itali-
cised. xold is the value to be transformed from the old units, and xnew is the resulting value in the new units.
Units are the units being defined, and multiplier, prefix, units and offset correspond to the values of
the appropriate attributes on the <unit> element.

Complex units are the product of multiple units. In a complex units definition, a <units> element
contains more than one <unit> element or a <unit> element that defines an exponent attribute with
a value other than "1.0". The conversion between the new units and the product of the constituent units is
given by the formula below.

xnew [Units] = (m1 . . . mn p1
e1 . . . pn

en)

[

Units
u1

e1 . . . un
en

]

xold [u1
e1 . . . un

en] (4)

The mi, pi, ui, and ei terms refer to the values of the multiplier, prefix, units and exponent
attributes on the i-th <unit> element respectively.

An offset attribute may not be defined on any <unit> elements that occur inside a complex units
definition. When a complex units definition references a simple units definition, any offset associated
with the simple units definition is removed. This means that conversions such as the one between degrees
Fahrenheit per inch and degrees Celsius per centimetre involve only a scale factor.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 44

5.2.3 New base units

A modeller might want to define and use units for which no simple conversion to SI units exist. A good
example of this is pH, which is dimensionless, but uses a log scale. Ideally, pH should not simply be defined
as dimensionless because software might then attempt to map variables defined with units of pH to any other
dimensionless variables.

CellML addresses this by allowing the model author to indicate that a units definition is a new type
of base unit, the definition of which cannot be resolved into simpler subunits. This is done by defining a
base units attribute value of "yes" on the <units> element. This element must then be left empty.
The base units attribute is optional and has a default value of "no". If the base units attribute is
omitted or assigned a value of "no", units are expected to be defined in terms of other units as described
in Section 5.2.2.

The indiscriminate use of the base units attribute is strongly discouraged, because it has a significant
impact on the re-usability of models and components. In particular, the base units attribute should not
be used to restrict users to creating models with an application-specific dictionary of units, as this prevents
the efficient exchange of CellML models with other applications.

Software that is checking the consistency of the units in an equation (described in more detail in Sec-
tion 5.2.7) can stop the recursive resolution of units definitions when the only remaining units are base SI
units and user-defined base units.

5.2.4 Expansion of units definitions

For interoperability, software that claims to perform units conversion when passing variables between com-
ponents and/or claims to perform dimension consistency checking of equations should obtain results that
are equivalent to those produced using the algorithms described in Appendix C.3.5 and Appendix C.3.6,
respectively. Both of these algorithms make use of the algorithm defined in Appendix C.3.4 to fully expand
units definitions into functions of the SI and user-defined base units.

For both simple and complex units definitions (as defined by Equation (3) and Equation (4), respec-
tively), the algorithm recursively substitutes in equations expanding the unknown term xold, stopping when
the unknown term has only SI or user-defined base units.

Although this specification does not require software to implement this algorithm exactly, it is used
extensively to demonstrate units conversion and dimension checking as described in Section 5.2.6 and
Section 5.2.7, respectively. Appendix C.4.2 provides examples of units definition expansion according to
the algorithm described in Appendix C.3.4.

5.2.5 Expansion of the non-SI units definitions in the CellML dictionary

Having defined a mathematical notation in Section 5.2.2 and a technique for the expansion of units defi-
nitions, it is now possible to formally specify how the definitions of the non-SI units in Table 2 should be
expanded. The CellML versions of these units definitions and the associated equations are given below.
The definition of liter is identical to the definition of litre. As described in Section 5.2, dimensionless is not
related to the SI units, and cannot be expanded.

<units name="gram">
<unit multiplier="0.001" units="kilogram" />

</units>

xnew [gram] = 0.001

[

gram
kilogram

]

xold [kilogram] (5)

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 45

<units name="litre">
<unit multiplier="1000" prefix="centi" units="metre" exponent="3" />

</units>

xnew [litre] =
(

1000
(

10−2
)3

)

[

litre
metre3

]

xold

[

metre3
]

= 0.001

[

litre
metre3

]

xold

[

metre3
]

(6)

5.2.6 Conversion between units definitions

Associating units definitions with every variable declaration in a component allows variables from com-
ponents that make use of different sets of units to be mapped together, as long as the variables have the
same dimensions. Appendix C.3.5 specifies a possible method for converting a numeric value from one set
of units to another. CellML processing software is not required to be capable of converting between units
definitions. However, for interoperability, software that does implement this functionality should achieve
the same results as if this method were used, although the exact implementation may differ.

This implementation generates an expression that relates each units definition to SI and user-defined
base units. This expression is obtained by recursively expanding each units definition as described in Ap-
pendix C.3.4, and then simplifying the result. The expression for the input units is then inverted to give an
expression that relates the appropriate base units to the input units. This inverted expression is substituted
into the expression for the target units, producing a single expression that relates the quantity to be converted
from the input units to a corresponding quantity in the target units. The inversion and substitution process
is demonstrated by example in Appendix C.4.3.

5.2.7 Equation dimension checking

The association of units with every variable and bare number that appears in an equation in a CellML
document provides CellML processing software the opportunity to perform equation dimension checking.
Verifying that equations have consistent dimensions can potentially catch many basic mathematical errors.

Appendix C.3.6 specifies a possible implementation of equation dimension checking. This implementa-
tion splits an equation into a tree of equation parts, in which each parent part is obtained by the application
of a single operator to its children. The units definition on each leaf node (i.e., part without children) is
expanded into base units, as described in Appendix C.3.4. The units definition for a node at a higher level
of the tree is constructed by combining the units definitions of its children. An equation has consistent
dimensions if no errors are found while traversing the tree and if the fully expanded units definitions of the
two nodes at the top level of the tree are equivalent, as defined in Appendix C.2.2.

CellML processing software is free to ignore units in mathematics and assume that equations are con-
sistent. For interoperability, software that performs equation dimension checking should achieve the same
results as if the implementation discussed in Appendix C.3.6 were used, although the exact implementation
may differ.

This specification does not attempt to completely prevent model authors from creating invalid mathe-
matics. Dimension consistency checking prevents modellers from adding variables with different dimen-
sions but would not find errors in Equation (7) and Equation (8), which have different units but the same
dimensions:

x [volt] = y [volt] + z [millivolt] (7)

x [inch] = y [metre] + z [nautical mile] (8)

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 46

Although it would be technically possible (and useful) to find and correct such errors, CellML processing
software is not required to be able to do so.

5.3 Examples

5.3.1 User-defined units and new base units

Figure 7 demonstrates how users can extend the set of units in the CellML dictionary by defining new sets
of units.

<!-- User-defined Base Units -->
<units name="pH" base_units="yes" />

<!-- Simple Units Definitions -->
<units name="inch">

<unit multiplier="2.54" prefix="centi" units="metre" />
</units>

<units name="fahrenheit">
<unit multiplier="1.8" units="celsius" offset="32.0" />

</units>

<!-- Complex Units Definitions -->
<units name="celsius_per_centimetre">

<unit units="celsius" />
<unit prefix="centi" units="metre" exponent="-1" />

</units>

<units name="fahrenheit_per_inch">
<unit units="fahrenheit" />
<unit units="inch" exponent="-1" />

</units>

<units name="pH_per_celsius">
<unit units="pH" />
<unit units="celsius" exponent="-1" />

</units>

FIGURE 7: Some examples of the use of the <units> element demonstrating the definition of simple and
complex units.

5.3.2 Advanced examples

Examples of the expansions of units definitions, conversion between units definitions and equation dimen-
sion checking are given in Appendix C.4.

5.4 Rules for CellML Documents

Units are a fundamental part of a CellML model definition. In this section, formal rules are specified for the
system of units definition introduced in Section 5.2.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 47

5.4.1 The <units> element

1. Allowed use of the <units> element

• Both the <model> and <component> elements may contain any number of <units> ele-
ments.

• Each <units> element must define a name attribute, and may define a base units attribute.
• If a <units> element defines a base units attribute with a value of "yes", then that
<units> element must contain only the following elements, which may appear in any order:

– <RDF> elements in the RDF namespace.

• If a <units> element does not define a base units attribute with a value of "yes", then
that <units> element must contain only the following elements, which may appear in any
order:

– <unit> elements in the CellML namespace,
– <RDF> elements in the RDF namespace.

2. Allowed values of the name attribute

• The value of the name attribute must be a valid CellML identifier as discussed in Section 2.2.1.

• The value of the name attribute must not equal one of the names defined in the standard dictio-
nary of units in Table 2.
[Model authors may not redefine the standard units.]

• The value of the name attribute must be unique across all <units> elements within a given
<model> or <component> element.
[Two <units> elements in the same <model> element may not have the same name attribute
value, although a <units> element in a <component> element may share the same name
as a <units> element in the parent <model> element. In this case, the units definition in
the <component> element supersedes the model-wide definition when referenced inside that
component.]

3. Allowed values of the base units attribute

• If present, the value of the base units attribute must be "yes" or "no".
• If not present, the value of the base units attribute defaults to "no".

5.4.2 The <unit> element

1. Allowed use of the <unit> element

• A <unit> element must contain only the following elements:

– <RDF> elements in the RDF namespace.

• Each <unit> element must define a units attribute. It may also define prefix, exponent,
multiplier, and offset attributes.

2. Allowed values of the units attribute

• The value of the units attribute must be taken from the standard dictionary of units listed in
Table 2 or be the value of the name attribute on a <units> element defined in the current
<component> or <model> element.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 48

• The value of the units attribute must not reference a units definition that contains <unit>
elements that in turn directly or indirectly reference the current units definition.

[This rule prevents circular units definitions. It must be possible to break down a complex units
definition into SI and user-defined base units.]

3. Allowed values of the units model attribute

• If present, the value of the units model attribute must equal the value of the xlink:title
attribute of an <import model> element contained within the current <model> element.

[In this rule the use of the xlink namespace prefix indicates that the title attribute is in the
XLink namespace.]

• The absence of the units model attribute implies the current model.

4. Allowed values of the prefix attribute

• If present, the value of the prefix attribute must be an integer or a name taken from one of the
name columns of Table 3.

[The unit is scaled by 10 raised to the power of the specified integer or the factor correspond-
ing to the specified name. Therefore, prefix attribute values of "centi" and "-2" are
equivalent.]

• If not present, the value of the prefix attribute defaults to "0".

5. Allowed values of the exponent attribute

• If present, the value of the exponent attribute must be a real number.

• If not present, the value of the exponent attribute defaults to "1.0".

6. Allowed values of the multiplier attribute

• If present, the value of the multiplier attribute must be a real number.

• If not present, the value of the multiplier attribute defaults to "1.0".

7. Allowed values of the offset attribute

• If present, the value of the offset attribute must be a real number.

• If not present, the value of the offset attribute defaults to "0.0".

8. Proper use of the offset attribute

• A <units> element containing a <unit> element that defines an offset attribute with a
value other than "0.0" must not contain other <unit> elements.

[The offset attribute can only be used in a simple units definition, as defined in Section 5.2.2.]

• A <unit> element that defines an offset attribute with a value other than "0.0" must not
define an exponent attribute with a value other than "1.0".

[The offset attribute can only be used in a simple units definition, as defined in Section 5.2.2.]

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 49

5.5 Rules for Processor Behaviour

5.5.1 Resolving references to units definitions

The <units> element may be placed inside both <model> and <component> elements. When user-
defined units are referenced by a variable or number declaration inside a component, the units definition is
first looked for inside the current <component> element. If a matching units definition cannot be found,
then the units definition is looked for in the parent <model> element.

5.5.2 Units associated with the MathML constants elements

This section defines the units associated with the MathML elements that appear in the constants subset
of the CellML set defined in Section 4.2.3. These elements represent numerical values. Operators can be
applied to combinations of these elements, variables and numbers in an equation. Units must be associated
with these elements to allow for equation dimension checking.

The <true> and <false> elements have units of cellml:boolean, where cellml:boolean
is a set of base units defined purely for use in this specification. (Note that users may not define their
own cellml:boolean units, as this is not a valid CellML identifier.) cellml:boolean units are not
associated with variables or numbers, but can be produced as the result of the application of relational or
logical operators, as discussed in Appendix C.3.3.

The <notanumber>,<pi>, <infinity> and <exponentiale> elements all have units of dimensionless.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 51

6 Grouping

6.1 Introduction

It is often useful to organise groups of components within a model into a hierarchical structure. This
structure might reflect a logical organisation of components within the group or their physical configuration.
CellML provides a single mechanism for the specification of both of these types of hierarchy that is based on
a grouping scheme. This grouping scheme is general enough that it can be used within CellML documents
to specify non-hierarchical grouping relationships between components.

In CellML, a hierarchy is a tree of components linked by parent-child relationships, where all of these
relationships are of the same type. A hierarchy has a single root component and at least one child compo-
nent. A model may contain numerous hierarchies of the same type. A component must only appear once
within a set of hierarchies of a given type, but may appear in multiple hierarchies if each of these hierar-
chies is of a different type. CellML defines two types of relationship for use within the grouping scheme:
encapsulation and containment.

The definition of a logical hierarchy of components in a network is known as “encapsulation”. En-
capsulation allows the modeller to hide part of a model by using a single component as an interface to a
hidden submodel. The parent component hides the details of one or more child components from the rest
of the model. Encapsulation provides a powerful mechanism for simplifying the structure of the model by
preventing connections between specified sets of components. Components in the main model must not be
connected to child components in the encapsulated submodel — all variables must be mapped through the
encapsulating parent component. A component in the submodel must only be connected to its parent com-
ponent, other components in the same submodel, and components that it encapsulates. A modeller wishing
to re-use an encapsulated submodel may treat the submodel as a “black box”, and deal exclusively with the
interface presented by the encapsulating component.

The definition of physical hierarchies within a model is known as “containment”. A model author can
specify that one or more child components are physically inside of a parent component without describing
the geometric aspects of the relationship in detail. This information would typically be used by CellML
processing software to provide a physical representation of a model. A model may contain multiple types
of containment hierarchy, which are differentiated based on names that the modeller assigns to these hier-
archies.

Model authors are also free to extend the grouping scheme with user-defined types of relationships
between components. These relationships need not be hierarchical in nature. However, CellML processing
software is only required to recognise encapsulation and containment relationships.

Encapsulation and containment hierarchies do not add any mathematical information to the model.
Model authors must not define their own grouping relationships that are intended to imply mathematical
information.

Models may define multiple hierarchies of multiple types. CellML processing software is free to treat
all hierarchies of the same type as separate hierarchies. Alternatively, it may combine all hierarchies of the
same type into a single hierarchy by assuming that the root components of all explicitly defined hierarchies
are children of a single anonymous component. This anonymous component is not explicitly defined within
the CellML document and has no properties.

6.2 Basic Structure

6.2.1 Definition of groups

Logical and physical hierarchies are both declared using the <group> element. This element must be a
child of a <model> element. A <group> element can be used to define multiple hierarchies and associate
multiple relationship types with each hierarchy. The definition of a hierarchy or set of hierarchies of the

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 52

same type can be split up over multiple <group> elements, as long as all the children of a given parent
component in a hierarchy appear in a single <group> element.

A <group> element must contain one or more <relationship ref> elements, each of which
must define a relationship attribute, the value of which references one type of relationship. CellML
processing software is required to recognise two types of relationship: encapsulation and containment,
which are indicated by relationship attribute values of "encapsulation" and "containment",
respectively. Model authors can define new types of relationship by specifying a relationship attribute
that is not in the CellML namespace on the <relationship ref> element. All of the relationships
referenced by the <relationship ref> elements within a given <group> element are associated
with all the parent-child pairs defined within that <group> element.

A <group> element must also contain one or more <component ref> elements. Each <component ref>
element must define a component attribute, the value of which references a component within the current
model. A parent-child link is created between components by nesting a <component ref> element that
references the child component inside a <component ref> element that references the parent compo-
nent. Multiple levels of nesting may be used within a single <group> element to define a hierarchy.

All <component ref> elements defined immediately inside the <group> element must contain fur-
ther <component ref> elements when defining an encapsulation or containment hierarchy. This ensures
that valid hierarchical structures are defined. Top-level <component ref> elements need not contain fur-
ther <component ref> elements in <group> elements that reference only user-defined relationships.
This allows the definition of non-hierarchical relationships.

A single hierarchy may be defined in multiple <group> elements. This occurs when a component is
referenced in two groups that reference the same relationship type. However, all of the children of a given
parent component must be defined within a single <group> element. Therefore, any given component can
only be referenced once as a parent and once as a child for a given relationship type across the entire model.
This simplifies the construction and validation of hierarchies.

A <relationship ref> element may define a name attribute in addition to the required relationship
attribute. The value of the name attribute on <relationship ref> elements can be used to refine a
given relationship type. This allows, for instance, the creation of several overlapping containment hier-
archies within the same model, each with a different name. See Section 6.2.4 for more information on
this.

Geometric containment relationship information is formally independent of logical encapsulation infor-
mation, but CellML processing software is free to check for inconsistencies between the two relationships
— it would generally be an error for an encapsulating component to be physically inside one of its encap-
sulated child components.

6.2.2 The encapsulation relationship type

Encapsulation allows the modeller to split a model into layers of complexity. A single component can be
used to encapsulate a complex partial model, and thereby provide a unified interface for all information
passing between that submodel and the rest of the model. This allows a modeller to refine the encapsulated
submodel without having to make any changes to the rest of the model.

A model may contain any number of encapsulation hierarchies, as long as these do not overlap. If
more than one hierarchy is explicitly defined, it may be useful to combine these into a single hierarchy by
assigning all unencapsulated components an anonymous parent component. This anonymous component
could make it easier to check that the hierarchies do not overlap and do not define any circular relationships
between components.

The components in a model can be divided into four sets with respect to any given component (the
current component). The set of all components immediately encapsulated by the current component is
the encapsulated set. The parent component is the component that encapsulates the current component.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 53

Other components encapsulated by the same parent make up the sibling set. All other components, which
are not available to make connections with the current component, make up the hidden set. If the current
component is not encapsulated, then it has no parent and the sibling set consists of all other unencapsulated
components in the model.

These sets are best demonstrated by example. Given the network shown in Figure 8, Table 4 lists the
parent components and the components in the encapsulated, sibling, and hidden sets for a selected set of
components picked as the current component.

B

C D

E

F

H

GA

FIGURE 8: This simple model provides the basis for the demonstration of the concepts of encapsulated sets,
parents, sibling sets, and hidden sets, as described in the text. The model consists of eight components each
represented by a circle. The lines between the components represent connections, and a red arrowhead on one
of these lines indicates that the component at the tail of the arrow is encapsulated by the component at the

head of the arrow.

Current Component Encapsulated Set Parent Sibling Set Hidden Set
A B, E anonymous G C, D, F, H
B C, D A E F, G, H
C none B D A, E, F, G, H
E F A B C, D, G, H
G H anonymous A B, C, D, E, F

TABLE 4: This table lists the parent components, and the components in the encapsulated, sibling, and
hidden sets for a selected few components from the example model in Figure 8. Components A and G are
root components of separate hierarchies. It may be useful, however, to assign them an anonymous parent

component that enables the formation of a single encapsulation hierarchy for the entire model.

Every variable must define its availability for use in other components. This is done with the public interface
and private interface attributes on the <variable> element. The interface exposed to the par-
ent component and components in the sibling set is defined by the public interface attribute. The
private interface attribute defines the interface exposed to components in the encapsulated set. Each
interface has three possible values: "in", "out", and "none", where "none" indicates the absence of
an interface. The separation of interfaces allows the modeller to incrementally add complexity to an encap-

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 54

sulated submodel without changing the interface that the encapsulating component presents to the rest of
the model.

The mappings allowed between variables declared in each component are defined by the public and
private interfaces of each variable and the prohibition on connecting an encapsulated component to compo-
nents other than its parent component, members of its sibling set, and any components it in turn encapsu-
lates. Variables with a public interface attribute value of "in" must be mapped to a single variable
in a component in the sibling set with a public interface attribute value of "out" or to a single
variable in the parent of the current component with a private interface attribute value of "out".
Similarly, variables with a public interface value of "out" may be mapped to variables in compo-
nents in the sibling set with a public interface attribute value of "in" or to variables in the parent
component with a private interface value of "in". Note that defining a public interface
attribute value of "out" on a variable makes it legal to map the variable to other variables, but does not
require that such a mapping occur. If a variable has a public interface attribute value of "none", it
is neither input from or exposed to its parent or components in the sibling set.

Variables with a private interface attribute value of "in" must be mapped to a single variable
in a single component in the encapsulated set with a public interface attribute value of "out".
Variables with a private interface attribute value of "out" may be mapped to variables in com-
ponents in the encapsulated set with a public interface attribute value of "in". If a variable has a
private interface attribute value of "none", it is neither input from or exposed to the components
in the encapsulated set.

If either the public interface attribute or the private interface attribute of a variable have
a value of "in", that variable is declared elsewhere and its value must not be mathematically modi-
fied in the current component. Otherwise, the variable belongs to the current component. If both the
public interface and private interface attributes of a variable have a value of "none", the
variable can only be used in the current component and is invisible to all other components in the model.

The two interface attributes of a variable are completely independent with one exception: it is invalid
for a variable to have both public interface and private interface attributes with a value of
"in". An interface with a value of "in" reflects an unmet need in the current component that must be
satisfied — this need can be met in either the public or private interface, but not both.

6.2.3 The containment relationship type

The containment relationship allows the modeller to specify that a particular component is physically inside
another. This might be used by software to create a physical representation of the model. Containment
relationships can be specified either in combination with or independent of encapsulation relationships.
Containment relationships do not influence any aspect of model definition or behaviour.

6.2.4 Named containment relationship types

CellML allows the definition of multiple overlapping containment hierarchies in a given model. This func-
tionality allows the modeller to define several different ways of organising a model, each of which might
highlight a different aspect of the model’s physical structure.

Multiple containment hierarchies are created by definingname attributes on the <relationship ref>
elements that have relationship attribute values of "containment". In effect, the introduction of a
name attribute defines a new relationship type that has the same semantics as the unnamed containment rela-
tionship type. All containment hierarchies that share the same name are subject to the same rules that apply
to any set of hierarchies that share the same relationship type. That is, each component must be referenced
at most once as a parent or child for a given relationship type, and circular hierarchies must not be defined.
Note that <group> elements that contain <relationship ref> elements with a relationship

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 55

attribute value of "containment" and that do not define a name attribute belong to a single relationship
type that is separate from any named containment relationship types.

6.2.5 User-defined relationship types

Modellers are free to use the grouping syntax of CellML to organise model components in ways not defined
by the CellML specification. To do this, the model author defines a new relationship type, the name of
which is used as the value of the relationship attribute on the <relationship ref> element.
The relationship attribute must be placed in an extension namespace, because future versions of the
CellML specification may define additional relationship types, the names of which could otherwise conflict
with user-defined relationship types.

User-defined relationship types can be used in the definition of hierarchical relationships and can also be
used to define more generic grouping relationships. For example, a modeller may define a relationship type
called adjacency, that indicates that any components referenced inside the group are physically adjacent
to each other.

Modellers are free to use the name attribute on the <relationship ref> element to specify multi-
ple hierarchies for user-defined relationship types, as is possible for the containment relationship type.

This specification does not provide a mechanism by which modellers may specify the meaning of a
user-defined type of relationship. This definition must be provided by the processing software declaring the
new relationship type.

6.3 Examples

Figure 9 demonstrates the use of the <group> element to define an encapsulation relationship. This exam-
ple is taken from the two reaction pathway with encapsulation example27 from the examples section of the
CellML website. It shows how a component representing an overall reaction (total reaction) can en-
capsulate components representing intermediate reactions (first reaction and second reaction)
and their by-products (C and D).

<group>
<relationship_ref relationship="encapsulation" />
<component_ref component="total_reaction">

<component_ref component="first_reaction" />
<component_ref component="second_reaction" />
<component_ref component="C" />
<component_ref component="D" />

</component_ref>
</group>

FIGURE 9: Example demonstrating the use of the <group> element to define a logical encapsulation rela-
tionship. See text for more details.

Figure 10 demonstrates the use of the <group> element to define encapsulation and containment rela-
tionships, the construction of two named containment relationship types, and the specification of a custom
relationship type (adjacency) in an extension namespace.

27http://www.cellml.org/examples/examples/signal transduction models/basic reaction models/two reaction model with encapsulation doc.html

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 56

<group>
<relationship_ref name="membrane" relationship="containment" />
<component_ref component="cell">

<component_ref component="cell_membrane" />
</component_ref>

</group>

<group>
<relationship_ref relationship="encapsulation" />
<relationship_ref name="membrane" relationship="containment" />
<component_ref component="cell_membrane">

<component_ref component="sodium_channel" />
<component_ref component="calcium_channel" />

</component_ref>
</group>

<group>
<relationship_ref name="intracellular" relationship="containment" />
<component_ref component="cell">

<component_ref component="network_sarcoplasmic_reticulum" />
<component_ref component="junctional_sarcoplasmic_reticulum" />

</component_ref>
</group>

<group>
<relationship_ref

app:relationship="adjacency"
xmlns:app="http://www.software.com/cellml_processor" />

<component_ref component="network_sarcoplasmic_reticulum" />
<component_ref component="junctional_sarcoplasmic_reticulum" />

</group>

FIGURE 10: Examples demonstrating the use of the <group> element. See text for more details.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 57

The first <group> element states that the cell membrane component is physically inside the cell
component and that this particular containment relationship type is called membrane. The next <group>
element states that the sodium channel and calcium channel components are both physically in-
side and logically encapsulated by the cell membrane component. This containment relationship com-
pletes the membrane containment hierarchy. The encapsulation relationship prevents the sodium and
calcium channel components from being connected to any components other than the cell membrane
component, each other, and any components they in turn encapsulate.

The third <group> element states that the two components representing parts of the sarcoplasmic
reticulum are physically inside the cell, and that this relationship type is called intracellular. Finally,
the fourth <group> element introduces the user-defined relationship adjacency and states that the two
sarcoplasmic reticulum components share this relationship. This relationship type is declared by putting the
relationship attribute in an extension namespace and assigning it a value of "adjacency". Note
that this relationship is not hierarchical in nature, and CellML processing software is free to ignore the
information provided by this group.

6.4 Rules for CellML Documents

6.4.1 The <group> element

1. Allowed use of the <group> element

• A <model> element may contain any number of <group> elements.

• A <group> element must contain only the following elements, which may appear in any order:

– <relationship ref> and <component ref> elements in the CellML namespace,
– <RDF> elements in the RDF namespace.

[Recommended practice is to define the CellML namespace child elements in a <group>
element in the order stated above.]

• A <group> element must contain at least one <relationship ref> element.

• A <group> element must contain at least one <component ref> element.

6.4.2 The <relationship ref> element

1. Allowed use of the <relationship ref> element

• A <relationship ref> element must contain only the following elements:

– <RDF> elements in the RDF namespace.

• Each <relationship ref> element must define a relationship attribute in either the
CellML namespace or an extension namespace. It may also define a name attribute.

[A relationship attribute declaring a user-defined relationship type is placed in an ex-
tension namespace. This restriction has been included to prevent conflicts with future versions
of the CellML specification, which may define additional types of relationships in the CellML
namespace.]

2. Allowed values of the relationship attribute

• The value of a relationship attribute in the CellML namespace must be "containment"
or "encapsulation".

3. Allowed values of the name attribute

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 58

• The value of the name attribute must be a valid CellML identifier as discussed in Section 2.2.1.

[Note that unlike most other name attributes, the value of the name attribute on a <relationship ref>
element is not expected to be unique across the current model. Instead, <group> elements that
include <relationship ref> elements that share the same name attribute value form the
parts of a single hierarchy.]

4. Proper use of the name attribute

• A name attribute must not be defined on a <relationship ref> element with a relationship
attribute value of "encapsulation".

[A model must define at most one unnamed encapsulation hierarchy.]

5. Proper use of the relationship and name attributes

[The following rules together prevent the model author from referencing the same hierarchy more
than once within a given <group> element.]

• A <group> element must not contain two or more <relationship ref> elements that
define a relationship attribute in a common namespace with the same value and that have
the same name attribute value.

• A <group> element must not contain two or more <relationship ref> elements that
define a relationship attribute in a common namespace with the same value and do not
define name attributes.

6.4.3 The <component ref> element

1. Allowed use of the <component ref> element

• A <component ref> element must contain only the following elements, which may appear
in any order:

– <component ref> elements in the CellML namespace,
– <RDF> elements in the RDF namespace.

• A <component ref> element must define a component attribute.

2. Proper use of the <component ref> element

• A <component ref> element that is defined immediately within a <group> element that
contains a <relationship ref> element with a relationship attribute value of "encap-
sulation" or "containment" must contain at least one child <component ref> ele-
ment.

[Containment and encapsulation relationships must be hierarchical.]

• In a given hierarchy, only one of the <component ref> elements that reference a given com-
ponent may contain further <component ref> elements.

[This rule prevents a given component from being a parent more than once in a given hierarchy.
A hierarchy is a set of components linked by a common type of parent-child relationship. The
definition of a hierarchy may be split over multiple <group> elements, but the definition of a
set of parent-child links must not be. It would be much more difficult to assemble a hierarchy
from a CellML document if a set of parent-child links could be defined in multiple <group>
elements.]

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 59

• In a given hierarchy, only one of the <component ref> elements that reference a given com-
ponent may be contained inside another <component ref> element.

[Complements the previous rule. This one prevents a given component from being a child more
than once in a given hierarchy.]

• In a given hierarchy, a child component must not directly or indirectly contain its parent among
its children.

[A hierarchy must not be circular.]

3. Allowed values of the component attribute

• The value of the component attribute must equal the value of the name attribute of a <component>
element contained within the current <model> element.

6.5 Rules for Processor Behaviour

6.5.1 Treatment of relationship types in a single model

A given relationship type must have the same semantics across a model and at all levels in every hierarchy
associated with that relationship type. The semantics of the encapsulation and containment relationship
types are defined in Section 6.2.2 and Section 6.2.3, respectively.

Within a given<model> element, any hierarchies defined in <group> elements that contain <relationship ref>
elements with identical relationship and name attribute values belong to the same relationship type,
and must be treated as such. Any hierarchies defined in <group> elements that contain <relationship ref>
elements with identical relationship attribute values and undefined name attributes belong to the same
relationship type, and must be treated as such.

6.5.2 Groups must not imply mathematical information

Modellers must not use CellML groups to add mathematical information to the model. Modellers must not
define their own types of relationships that imply mathematical behaviour. This ensures that the mathemat-
ical behaviour of a model can be properly reproduced by all CellML processing software.

6.5.3 Groups must not imply metadata information

Modellers must not use CellML groups to associate properties or classification information with sets of
components. The metadata functionality is the proper method for making such associations. This increases
the chance of that information being used by a range of CellML processing software.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 61

7 Reactions

7.1 Introduction

CellML is intended to be used to represent many different types of models. Therefore, its basic structure is
general. Models are primarily specified by explicitly defining mathematics using MathML. It is possible to
specify a model purely in terms of mathematics, without using any of the elements defined in this section of
the specification. However, in some types of models, information is lost when reducing the model to pure
mathematics. For instance, in biochemical pathway models it will not always be straightforward, or even
possible, to unambiguously determine from the mathematical rate laws which variables represent inhibitors
or activators in the reactions. Therefore, some additional elements are needed in CellML to fully capture
the information in biochemical pathway models.

7.1.1 Pathway model representations supported by CellML

Three fundamental representations of reaction/pathway models must be supported by CellML:

• Mathematical Equations: These are any valid mathematical equations that describe the model. For
example, they may be ordinary differential equations that define kinetic reaction rate laws and the rate
of change of the concentration of species participating in the modelled reactions.

• Chemical Expressions: These are the stoichiometric expressions (such as A + B <-> 2C + D)
used by chemists to represent reactions.

• Pathway Diagrams: These are the stylised drawings commonly used by biochemists and cell biolo-
gists to represent interactions among participants in reactions. Some examples of pathway diagrams
are shown in Section 7.3.

It is important that CellML be able to store the information needed to reproduce unambiguously any
of these representations of a model. It is also important to minimise duplication of information within
the model definition, because duplication can lead to inconsistencies. Therefore, CellML integrates the
information needed to support the three types of model representation.

The integration process has resulted in the introduction of a CellML syntax that implies a mathematical
relationship between variables in the current component. In this section of the specification, explicit math-
ematics refers to equations defined using MathML, and implicit mathematics refers to equations implied
from the CellML syntax.

7.1.2 Qualitative and quantitative pathway models

CellML supports both quantitative and qualitative pathway models. Many types of models are commonly
referred to as “qualitative”. Some of these are mathematically specified, while others are not. For the pur-
poses of this specification, qualitative pathway models consist solely of information about how the different
chemical species in the pathway relate, and contain no mathematics. However, the stoichiometry of the
reactions may be known. In other words, there is no mathematical representation of the model, but there
may still be a pathway diagram and chemical expressions that represent the model. Because a qualitative
model has no mathematics, CellML processing software is not required to be able to run a simulation using
a qualitative model. However, some software may support simple simulations using such models.

Any model in which the change of concentration of a chemical species participating in a reaction is
implicitly or explicitly defined is a quantitative pathway model. All others are qualitative pathway models.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 62

7.2 Basic Structure

The <reaction> element is used to store information associated with a single reaction. It may only
appear inside a <component> element. Examples demonstrating the use of the <reaction> element
are presented in Section 7.3. It is possible for a single <component> element to contain more than one
<reaction> element. However, this makes it difficult to re-use the individual reactions, and is therefore
not the recommended best practice. The <reaction> element may define a reversible attribute, the
value of which indicates whether or not the reaction is reversible. The default value of the reversible
attribute is "yes".

The reaction element contains multiple <variable ref> elements, each of which references a vari-
able that participates in the reaction. The recommended best practice is to create a <variable ref>
element for each variable representing the concentration of a chemical species that participates in a reac-
tion, as well as one for the variable representing the rate of the reaction. The required variable attribute
is the only attribute on the <variable ref> element. Its value is the name of the referenced variable.
This variable must be declared in the current <component> element.

Each <variable ref> element contains one or more <role> elements. A <role> element must
not contain any elements in the CellML namespace, but may have up to four attributes. The required role
attribute specifies the way in which the variable participates in the reaction. The role attribute must have a
value of "reactant", "product", "catalyst", "activator", "inhibitor", "modifier",
or "rate". The meaning associated with each value is defined in Section 7.4. The optional direction
attribute may be used on <role> elements in reversible reactions. If defined, it must have a value of
"forward", "reverse", or "both". Its value indicates the direction of the reaction for which the role
is relevant. It has a default value of "forward". The optional delta variable attribute indicates
which variable is used to store the change in concentration of the species represented by the variable ref-
erenced by the current <variable ref> element. The optional stoichiometry attribute stores the
stoichiometry of the current variable relative to the other reaction participants. Section 7.4 contains detailed
rules for the use of these attributes.

The <role> elements may also contain <math> elements in the MathML namespace, which de-
fine equations using MathML. Although it is not required, it is recommended best practice to store all of
the equations that relate to a reaction inside the appropriate <role> elements in the <reaction> ele-
ment. This makes the <reaction> element more re-usable. In addition, defining mathematics inside a
<role> element has the effect of associating the equations with the variable referenced by the containing
<variable ref> element, in the role defined by the <role> element. This enables CellML processing
software to present the equations in a more meaningful context. For instance, it may group all of the rela-
tionships between the rate variable and the delta variables for all of the reactants and products, or it may
display these equations in a different color.

There are three uses for equations inside <role> elements:

• If the role attribute value is "rate", any enclosed equations calculate the kinetic rate law (i.e.,
calculate the value of the referenced variable) and the value of intermediate variables used in the rate
law equation.

• If the role attribute value is "reactant" or "product", the equations calculate the relationship
between the general reaction rate and the rate of change of the species represented by the referenced
variable (i.e., calculate the value of the variable named in the delta variable attribute), and
calculate any intermediate variables used in this relationship.

• In all other cases, the equations relate an intermediate variable used in the rate calculation to the
variable referenced by the containing <variable ref> element. For instance, it would be appro-
priate to calculate an effective concentration of a catalyst inside the <role> element contained by

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 63

the <variable ref> element that references the variable representing the actual concentration of
the catalyst.

CellML processing software is not required to be able to deduce the stoichiometry of a reaction from ex-
plicit mathematics. Therefore, it is strongly recommended that the stoichiometry and delta variable
attributes be used instead of explicit mathematics if the concentration change is simply the reaction rate mul-
tiplied by the stoichiometry. (The rules for deriving this mathematical relationship from the stoichiometry
attribute are defined in Section 7.5.5.)

7.3 Examples

This section contains two examples demonstrating the recommended use of the <reaction>, <variable ref>
and <role> elements to define two basic reactions. The mathematics defining the reaction rate have been
omitted in these examples. See the signal transduction model examples28 section of the CellML website for
further examples.

Figure 11 shows a pathway diagram representation of the following reversible reaction:

A + B <-> 2C + D

Figure 12 demonstrates the use of CellML to define this reaction. There are five <variable ref>
elements in the <reaction> element: one for each variable representing the concentration of a chemical
species participating in the reaction, and one for the variable representing the general reaction rate. Note
that the stoichiometry attribute has a value of "2" for the variable representing the chemical species C,
since this species appears with a stoichiometry of 2 in the chemical expression. The reversible attribute
on the <reaction> element and the direction attributes on the <variable ref> elements have
their default values ("yes" and "forward", respectively) and therefore could have been omitted, but
they are included for clarity.

A

B

C

D

FIGURE 11: A typical pathway diagram representation of the simple reversible reaction
A + B <-> 2C + D.

Figure 13 shows the pathway diagram for the following irreversible, catalyzed reaction, which exhibits
product-inhibition:

A + B -> D (catalyzed by C, inhibited by D)

The CellML definition of this reaction is shown in Figure 14.
The <variable ref> element that references the variable representing the concentration of species

D now contains two <role> elements, one with information about D as a product and the other with
information about D as an inhibitor. In this example, D has the same stoichiometry in both roles, but this
would not necessarily need to be the case.

28http://www.cellml.org/examples/examples/signal transduction models/index.html

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 64

<reaction reversible="yes">
<variable_ref variable="A">

<role
role="reactant" direction="forward"
delta_variable="delta_A" stoichiometry="1" />

</variable_ref>

<variable_ref variable="B">
<role

role="reactant" direction="forward"
delta_variable="delta_B" stoichiometry="1" />

</variable_ref>

<variable_ref variable="C">
<role

role="product" direction="forward"
delta_variable="delta_C" stoichiometry="2" />

</variable_ref>

<variable_ref variable="D">
<role

role="product" direction="forward"
delta_variable="delta_D" stoichiometry="1" />

</variable_ref>

<variable_ref variable="r">
<role role="rate">
<math xmlns="http://www.w3.org/1998/Math/MathML">

... <!-- reaction rate math -->
</math>

</role>
</variable_ref>

</reaction>

FIGURE 12: The CellML definition of the simple reversible reaction A + B <-> 2C + D. See text for
more details.

A

B
D

C

FIGURE 13: A typical pathway diagram representation of the irreversible reaction A + B -> D (catalyzed
by C, inhibited by D).

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 65

<reaction reversible="no">
<variable_ref variable="A">

<role role="reactant" delta_variable="delta_A" stoichiometry="1" />
</variable_ref>

<variable_ref variable="B">
<role role="reactant" delta_variable="delta_B" stoichiometry="1" />

</variable_ref>

<variable_ref variable="C">
<role role="catalyst" />

</variable_ref>

<variable_ref variable="D">
<role role="product" delta_variable="delta_D" stoichiometry="1" />
<role role="inhibitor" stoichiometry="1" />

</variable_ref>

<variable_ref variable="r">
<role role="rate">
<math xmlns="http://www.w3.org/1998/Math/MathML">

... <!-- reaction rate math -->
</math>

</role>
</variable_ref>

</reaction>

FIGURE 14: The CellML definition of the irreversible reaction A + B -> D (catalyzed by C, inhibited by
D). See text for more details.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 66

7.4 Rules for CellML Documents

7.4.1 The <reaction> element

1. Allowed use of the <reaction> element

• A <component> element may contain any number of <reaction> elements.

[The use of multiple <reaction> elements within a single <component> element is dis-
couraged.]

• A <reaction> element must contain only the following elements, which may appear in any
order:

– <variable ref> elements in the CellML namespace,
– <RDF> elements in the RDF namespace.

[The recommended best practice is to define one <variable ref> element for each variable
representing a chemical species that participates in the reaction, and one <variable ref>
element for the variable representing the rate of the reaction.]

• Each <reaction> element must contain at least one <variable ref> element.

• The <reaction> element may define a reversible attribute.

2. Allowed values of the reversible attribute

• If present, the reversible attribute must have a value of "yes" or "no".

• If not present, the value of the reversible attribute defaults to "yes".

[It is recommended to always explicitly define the value of this attribute.]

3. Proper use of the <reaction> element in encapsulating components

[It is often convenient to include a <reaction> element in a component that is encapsulating sev-
eral intermediate reactions (see Section 6 for more information about encapsulation). The encapsulat-
ing component represents an overall, or total, reaction, which can be represented by a <reaction>
element. This total reaction is effectively qualitative because the mathematics representing the pro-
gression of the total reaction are defined in the components representing the intermediate reactions.]

• A <reaction> element in an encapsulating component must not contain delta variable
attributes on the <role> elements or explicit mathematics defining the overall reaction rate or
the changes in concentration of the species that participate in the total reaction.

[A CellML document should not define an inconsistent set of equations. This rule prevents au-
thors inadvertently introducing explicit or implicit mathematics in an encapsulating component
that duplicates or contradicts mathematics (either explicit or implicit) defined in the encapsu-
lated components.]

7.4.2 The <variable ref> element

1. Allowed use of the <variable ref> element

• A <variable ref> element must contain only the following elements, which may appear in
any order:

– <role> elements in the CellML namespace,
– <RDF> elements in the RDF namespace.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 67

• Each <variable ref> element must contain at least one <role> element.

[The recommended best practice is to define one <role> element for each role assumed by
the chemical species represented by the referenced variable.]

• Each <variable ref> element must define a variable attribute.

2. Allowed values of the variable attribute

• The value of the variable attribute on a <variable ref> element within a <reaction>
element must equal the value of the name attribute on a <variable> element defined inside
the current <component> element.

• The value of the variable attribute must be unique across all <variable ref> elements
contained within the parent <reaction> element.

[A variable must only be referenced once in a single reaction.]

7.4.3 The <role> element

1. Allowed use of the <role> element

• A <role> element must contain only the following elements, which may appear in any order:

– <math> elements in the MathML namespace,
– <RDF> elements in the RDF namespace.

[Some rules for the use of mathematics in <role> elements are provided below, and rules for
the <math> element and its children are given in Section 4.]

• Each <role> element must define a role attribute. It may also define delta variable,
direction, and stoichiometry attributes.

2. Allowed values of the role attribute

• The role attribute must take one of the following seven values:

– "reactant": the species represented by the referenced variable is one of the species
consumed or transformed by the reaction (in the forward direction). Reactants are also
often called substrates.

– "product": the species represented by the referenced variable is one of the species pro-
duced by the reaction (in the forward direction).

– "catalyst": the species represented by the referenced variable catalyzes the reaction.
In biochemical pathways such a species will almost always be an enzyme and will almost
always occur with a stoichiometry attribute value of "1".

– "activator": the species represented by the referenced variable enhances the reaction.
Activators can occur with any stoichiometry. An activator will usually be a small molecule
that increases the activity of an enzyme catalyzing the reaction. However, the detailed reac-
tion representing this activation of the enzyme may not be included in the model. Instead,
the activator may be represented as directly affecting the kinetics of the catalyzed reaction.

– "inhibitor": the species represented by the referenced variable inhibits the reaction.
Inhibitors can occur with any stoichiometry. An inhibitor will usually be a species that
inhibits the activity of an enzyme catalyzing the reaction. However, the detailed reaction
representing this inhibition of the enzyme may not be included in the model. Instead, the
inhibitor may be represented as directly affecting the kinetics of the catalyzed reaction.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 68

– "modifier": the species represented by the referenced variable modifies the reaction in
some unspecified way.

– "rate": the referenced variable represents the rate of the reaction.

3. Proper use of the role attribute

• A <reaction> element must contain no more than one <variable ref> element with a
<role> element with a role attribute with a value of "rate".

[There may only be one rate variable per reaction.]

• A <variable ref> element that contains a <role> element with a role attribute value of
"rate" must not contain other <role> elements.

[The variable assigned the "rate" role may not be assigned any other roles.]

• A <role> element with a role attribute value of "rate"must not define delta variable
or stoichiometry attributes.

[The delta variable and stoichiometry attributes have no meaning for a rate vari-
able.]

4. Allowed values of the direction attribute

• If present, the direction attribute must take one of the following three values:

– "forward": the value of the role attribute is the role of the referenced variable in
the reaction when running in the “favoured” direction. The favoured direction is the one in
which the the reactants are being consumed (i.e., the time-derivatives of their concentrations
are negative), as defined by the kinetic rate law.

– "reverse": the value of the role attribute is the role of the referenced variable in the
reaction when running opposite to the “favoured” direction. In this direction, the reactants
(as defined by the kinetic rate law) are being produced.

– "both": the value of the role attribute is the role of the referenced variable in both
directions of the reaction.

• If not present, the value of the direction attribute defaults to "forward".

5. Proper use of the direction attribute

• A direction attribute on a <role> element that is inside a <reaction> element with a
reversible attribute value of "no" must have a value of "forward".

[Only reversible reactions may occur in two directions.]

• A direction attribute on a <role> element for which the role attribute has a value of
"rate", "reactant" or "product" must have a value of "forward".

[Variables representing the reaction rate, a reactant or a product should always be labelled as
such in the forward direction. To do otherwise would cause the implicit mathematics defined by
the delta variable and stoichiometry attributes on the reactant and product variables
to be erroneous.]

• Each <role> element contained in a given <variable ref> element must have a unique
combination of values for the role and direction attributes.

[Defining two <role> elements with the same role and direction attribute values would
allow the definition of inconsistent stoichiometries or multiple delta variables for a single vari-
able. Both of these situations would imply inconsistent mathematics.]

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 69

6. Allowed values of the stoichiometry attribute

• If present, the value of the stoichiometry attribute must be a real number.

[In most cases, the value will be an integer. However, a valid CellML model may use fractional
stoichiometries.]

7. Allowed values of the delta variable attribute

• If present, the value of the delta variable attribute must equal the name attribute on a
<variable> element defined inside the current <component> element.

• If present, the value of the delta variable attribute must be unique across all <role>
elements contained within the parent <component> element.

[One variable cannot represent the rate of change in concentration of more than one species.
The value of the delta variable attribute must be unique across the entire <component>
element because it is legal (but not recommended) to include more than one <reaction>
element in a single component.]

8. Proper use of the delta variable attribute

• A delta variable attribute must only appear on <role> elements in which the role
attribute has a value of "reactant" or "product".

[It is only in these roles that a chemical species may undergo a change in concentration.]

• A <role> element on which a delta variable attribute is declared must also either de-
clare a stoichiometry attribute or contain at least one <math> element in the MathML
namespace.

[The combination of the delta variable attribute and the stoichiometry attribute
implies a mathematical relationship between the variable referenced in the delta variable
attribute and the variable assigned the role of "rate", as defined in Section 7.5.5. If the
stoichiometry attribute is absent, the relationship between the variable assigned the role
of "rate" and the variable named in the delta variable attribute must be defined using
MathML.]

• A <role> element on which the stoichiometry and delta variable attributes are
both defined must not contain <math> elements in the MathML namespace.

[The equations in a <math> element inside a <role> element for which the role attribute
is "reactant" or "product" must relate the variable named in the delta variable
attribute to the variable assigned the role of "rate". Such equations would contradict the
relationship implied by the delta variable and stoichiometry attributes, as defined in
Section 7.5.5.]

• If the delta variable and stoichiometry attributes are both declared on any single
reaction participant, a <variable ref> element must be provided for the variable that rep-
resents the reaction rate. This <variable ref> must contain exactly one <role> element,
with a role attribute equal to "rate".

[The reverse is not true: a variable may be assigned a role of "rate" even if the "reactant"
and "product" variables do not define delta variable attributes. In this case, the mod-
eller may choose to provide explicit mathematics relating the "rate" variable to the change in
concentration of the various chemical species.]

9. Proper use of a <math> element inside a <role> element

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 70

• A <math> element in the MathML namespace inside a <role> element must define equations
that are relevant to the variable referenced by the containing <variable ref> element, acting
in the role defined by the role attribute on the <role> element.

[The meaning of “relevant” in this context is discussed in Section 7.5.6.]

7.5 Rules for Processor Behaviour

7.5.1 Implications of the reversible attribute

If the reversible attribute on a <reaction> element has a value of "yes", it is assumed that all
reactants in the forward direction are products in the reverse direction and vice versa. Similarly, all products
in the forward direction are assumed to be reactants in the reverse direction and vice versa. No assumptions
must be made of the species acting in other roles.

7.5.2 The absence of a stoichiometry attribute

CellML processing software must not make any assumptions if a stoichiometry attribute is not defined
on a <role> element. The absence of a stoichiometry value specifically does not imply a stoichiometry
of "1". Instead, it would usually mean that the stoichiometry of the reaction is unknown.

7.5.3 Chemical information implied by the stoichiometry attribute

The value of the stoichiometry attribute on a <role> element is defined to be the stoichiometry
of the chemical species whose concentration is represented by the variable referenced by the containing
<variable ref> element. This stoichiometry can be used to produce the chemical expression represen-
tation of the model.

7.5.4 The absence of a delta variable attribute

CellML processing software must not make any assumptions if a delta variable attribute is not defined
on a <role> element.

7.5.5 Math implied by the delta variable and stoichiometry attributes

The use of the delta variable and stoichiometry attributes on a <role> element implies the
following mathematical relationship between the declared delta variable and the rate variable (where the
variable representing the reaction rate will have a negative value when the reaction is proceeding in the
forward direction):

• For reactants: delta variable = (stoichiometry)(rate)

• For products: delta variable = -(stoichiometry)(rate)

The two reactions shown in Figure 15 are mathematically equivalent. The representation in the first
reaction in Figure 15 is the recommended best practice because processing applications are not required to
be able to extract the stoichiometry from an explicit MathML definition such as the one shown in the second
reaction.

Explicit mathematics should only be used in cases where the implicit formulation would be inappropri-
ate. Some examples of such cases are:

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 71

• If the stoichiometry of a reaction is unknown, but the modeller still wishes to relate the rate of change
of a particular chemical species to the general reaction rate. Defining the stoichiometry attribute
implies that the stoichiometry is known to equal the value of that attribute.

• If the modeller wishes to experiment with the stoichiometry of a species in different simulations using
the model. (In this case, it might be easier if the stoichiometry is defined as a variable.)

• If the math implied from the recommended formulation would be incorrect, i.e., in the rare cases
when a more complex function is needed to relate the change in concentration of a species to the
reaction rate.

In all of these cases, it is recommended best practice to put the mathematical expression used to define
the change in concentration of a species inside the <role> element contained in the <variable ref>
element referring to the variable representing the concentration of that species.

It is an error to explicitly declare mathematics that conflicts with or duplicates implied mathematics.
Therefore, a modeller must not declare a stoichiometry attribute and delta variable attribute in
addition to explicit math relating the change in concentration of the referenced species to the reaction rate.

7.5.6 Meaning of mathematics in reactions

Equations defined in <math> elements in the MathML namespace inside a <role> element must be
relevant to the the variable referenced by the parent <variable ref> element, acting in the role defined
by the value of the role attribute. This means that:

• If the role attribute value is "rate", the equations must calculate the kinetic rate law (i.e., calculate
the value of the referenced variable). Intermediate calculations related to the calculation of the rate
are also allowed. Conventionally, the variable representing the reaction rate will have a negative value
when the reaction is proceeding in the forward direction.

• If the role attribute value is "reactant" or "product", the equations must calculate the re-
lationship between the general reaction rate and the rate of change of the species represented by the
referenced variable (i.e., calculate the value of variable named in the delta variable attribute).
Intermediate calculations related to the calculation of the delta variable are also allowed.

• In all other cases, the equations must relate an intermediate variable used in the rate calculation to
the variable referenced by the containing <variable ref> element. For example, it would be
appropriate to calculate an effective concentration of an inhibitor or catalyst in the <role> element
contained in the <variable ref> element that references the variable representing the actual con-
centration of that species.

7.5.7 Resolution of inconsistencies

Duplication of information is avoided as much as possible. However, because modellers must be free to
define arbitrary rate laws, it was not possible to eliminate all information duplication. For instance, CellML
processing software is not expected to be able to deduce all information about a reaction from kinetic laws
of arbitrary form, even though most information is in fact represented in these laws. Therefore, there is a
possibility that the information in the mathematics and the information in the <reaction> element may
be inconsistent.

It is anticipated that most modellers will define CellML models using some sort of processing software,
which can reasonably be expected to write consistent mathematics. However, since CellML is a text-based
format, modellers may also create or edit models by hand, and in doing so risk creating inconsistent models.

The following rules govern the required behaviour of CellML conformant processing software in the
event that information in the explicitly and implicitly defined mathematics do not agree:

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 72

<!--
The recommended best practice for calculating the value of delta_A, which
is an implied function of stoichiometry and reaction rate.

-->
<reaction reversible="yes">

<variable_ref variable="A">
<role

role="reactant" direction="forward"
delta_variable="delta_A" stoichiometry="2" />

</variable_ref>

<variable_ref variable="r">
<role role="rate">
<math xmlns="http://www.w3.org/1998/Math/MathML">

... <!-- reaction rate math -->
</math>

</role>
</variable_ref>

</reaction>

<!--
In this reaction, the value of delta_A is calculated explicitly using MathML.
This is not the recommended best practice.

-->
<reaction reversible="yes">

<variable_ref variable="A">
<role

role="reactant" direction="forward"
delta_variable="delta_A">

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><eq />
<ci> delta A </ci>
<apply><times />

<cn cellml:units="dimensionless"> 2.0 </cn>
<ci> r </ci>

</apply>
</apply>

</math>
</role>

</variable_ref>

<variable_ref variable="r">
<role role="rate">
<math xmlns="http://www.w3.org/1998/Math/MathML">

... <!-- reaction rate math -->
</math>

</role>
</variable_ref>

</reaction>

FIGURE 15: The top <reaction> element shows the recommended best practice for defining the change in
concentration delta A of a chemical species Awith respect to the reaction rate r. The second <reaction>
element shows an equivalent representation using an explicit MathML definition. Use of this formulation is

not recommended. The MathML blocks defining the rate laws are omitted.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 73

• CellML processing software may check for inconsistencies between mathematics explicitly defined
using MathML and mathematics implicitly defined using the attributes on the <role> element. If
software does check, it is recommended that it notify the user if inconsistencies are detected.

• If inconsistencies are found, CellML processing software must use mathematics explicitly defined
using MathML when running a simulation with the model.

• CellML processing software may treat inconsistencies as it chooses when representing the model.
For instance, software may ignore inconsistencies when rendering pathway diagrams or chemical
expressions.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 75

8 Metadata Framework

8.1 Introduction

Metadata is “data about data”. In a CellML document, the principal data is the structure and mathematics
of a biological model. Information that provides context for this data is metadata. Metadata can be included
in a CellML document to facilitate searches of collections of models and model components. It provides a
means for a modeller to include structured descriptive information about the model, which can help other
modellers determine whether they can incorporate the model into their own work.

This section of the CellML specification presents a framework for the use of metadata in a CellML doc-
ument. Methods for identifying types of metadata within that framework are recommended in the CellML
Metadata Specification29. The use of these methods ensures reliable extraction of metadata from CellML
documents across all processors aware of CellML Metadata. The CellML Metadata specification is being
developed independently of the CellML specification.

All metadata is optional. A model without any metadata is a valid CellML model. However, it is
recommended that a CellML document author provide as much metadata as possible, particularly his/her
name and contact information and a reference for a paper that describes the development of the model.

8.2 Basic Structure

Metadata should be embedded in a CellML document using the Resource Description Framework (RDF)30,
the syntax of which is defined in the RDF Model and Syntax Recommendation31. For interoperability,
CellML processing software should make use of the methods for identifying types of metadata outlined in
the CellML Metadata Specification32.

Section 2.2.2 defines two metadata namespaces that CellML processing software is expected to recog-
nise and recommended prefixes to which these namespaces should be mapped. RDF elements are placed in
the RDF namespace, which should be mapped to the prefix rdf. CellML Metadata elements and attributes
have their own namespace which should be mapped to the prefix cmeta.

CellML processing software is free to ignore any and all metadata. However, it is recommended that
software at least display metadata. Model authors are free to develop their own RDF schema for metadata,
or to store metadata in another format by using the CellML extension mechanism described in Section 2.2.3.
However, doing so decreases the likelihood that CellML processing software will be able to do anything
useful with the metadata in a CellML document.

Metadata is defined within an <rdf:RDF> element as shown in Figure 16. The rdf, cellml, and
cmeta prefixes are used throughout this section to indicate that elements and attributes are in the RDF,
CellML and CellML Metadata namespaces, respectively. The recommended best practice is to define the
RDF namespace and any namespaces used by the enclosed metadata on the <rdf:RDF> element, even if
these namespaces are already defined on the ancestor elements of the <rdf:RDF> element. This increases
the re-usability of the RDF block. Furthermore, RDF processing software that does not recognise the
CellML namespace can still parse a CellML document, extract the RDF blocks, and perhaps provide useful
functionality with the information described in the RDF.

An <rdf:RDF> element typically contains one or more <rdf:Description> elements, each of
which defines an rdf:about attribute. The value of the rdf:about attribute must be a valid Uniform
Resource Identifier33 (URI). Metadata may be associated with the document it is defined in by assigning
the rdf:about attribute an empty value (""). Metadata may be associated with an element in the current

29http://www.cellml.org/public/metadata/index.html
30http://www.w3.org/RDF/
31http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
32http://www.cellml.org/public/metadata/index.html
33http://www.ietf.org/rfc/rfc2396.txt

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 76

document by defining an attribute of type ID on that element and assigning the rdf:about attribute on
the <rdf:Description> element a value equal to the value of that attribute preceded by a hash (#).
An attribute must be given a type of ID in the document type declaration (DTD) or schema associated with
an XML document, and its value must be unique across all attributes of type ID in a given document. The
correct way to do this in a DTD is described in Section 3.3.1 of the XML 1.0 Recommendation34.

As was discussed in Section 2.2.1, the name attribute that occurs on many CellML elements is not of
type ID because it is not necessary that CellML identifiers be unique across a document. To facilitate the
association of metadata with CellML elements, a cmeta:id attribute in the CellML Metadata namespace
may be added to any CellML element. The CellML 1.1 DTD (given in Appendix A.6) declares this attribute
to be of type ID for all CellML elements. This declaration prevents CellML elements from having any other
attributes of type ID, including attributes in extension namespaces. The MathML 2.0 DTD defines an
attribute id of type ID for all MathML elements. Extension elements may use their own attributes of type
ID, or make use of cmeta:id attributes, which CellML processing software is required to treat as if it
had type ID. The value of an attribute of type ID must conform to the requirements specified in the XML
specification.

For interoperability, an RDF block should be stored in the element about which it contains metadata.
This makes the element more re-useable. Elements in the MathML namespace are an exception to this
recommendation. The MathML content of a <cellml:component> element might be extracted for use
in a general MathML processor, which might not be able to handle RDF content. Therefore, metadata on
MathML elements should be placed in the containing <cellml:component> element. If the RDF block
contains metadata about the CellML document, it should be included in the root element of the document.
Note that simply putting an RDF block inside an element is not sufficient to indicate that the metadata in
the block refers to that element. The rdf:about attribute on the <rdf:Description> element must
be used to indicate the resource about which the RDF block contains metadata.

8.3 Examples

Figure 16 demonstrates the use of metadata in CellML. Three RDF blocks are shown: one that provides
metadata about the CellML document, one that provides metadata about the model, and one that provides
metadata about a component contained in the model. Only the RDF framework elements are shown. The
actual metadata is not shown here. Examples in the CellML Metadata Specification35 will demonstrate how
to use the recommended metadata elements.

The first RDF block provides metadata about the CellML document. This is indicated by the empty value
of the rdf:about attribute on the <rdf:Description> element. The second RDF block has a value
of "#model01" in the rdf:about attribute on the <rdf:Description> element. This indicates that
this metadata provides information about the model that is delimited by the <cellml:model> element
with a cmeta:id attribute value of "model01". The final RDF block provides metadata about the
membrane component. This is indicated by the rdf:about attribute with a value of "#comp01" on
the <rdf:Description> element.

All three RDF blocks declare the RDF and CellML Metadata namespaces. This makes the RDF blocks
portable: the information needed to interpret the RDF will be preserved even if the blocks are extracted
from the CellML document.

34http://www.w3.org/TR/2000/REC-xml-20001006#sec-attribute-types
35http://www.cellml.org/public/metadata/index.html

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 77

<model
name="example_metadata_model"
cmeta:id="model01"
xmlns="http://www.cellml.org/cellml/1.1#"
xmlns:cellml="http://www.cellml.org/cellml/1.1#"
xmlns:cmeta="http://www.cellml.org/metadata/1.0#">

<!-- This metadata block is about the CellML document -->
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:cmeta="http://www.cellml.org/metadata/1.0#">

<rdf:Description rdf:about="">
<!-- Some metadata content, such as a last-modified date -->

</rdf:Description>
</rdf:RDF>

<!-- This metadata block is about the CellML model -->
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:cmeta="http://www.cellml.org/metadata/1.0#">

<rdf:Description rdf:about="#model01">
<!--
Some metadata content, such as a species for which
the model is relevant

-->
</rdf:Description>

</rdf:RDF>

<component name="membrane" cmeta:id="comp01">

<!-- This metadata block is about the membrane component -->
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:cmeta="http://www.cellml.org/metadata/1.0#">

<rdf:Description rdf:about="#comp01">
<!--
Some metadata content, such as an annotation describing
limitations of this representation of the membrane

-->
</rdf:Description>

</rdf:RDF>

</component>

</model>

FIGURE 16: An example demonstrating how metadata can be embedded in a CellML document using the
Resource Description Framework (RDF).

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 78

8.4 Rules for CellML Documents

8.4.1 Proper use of the cmeta:id attribute

• A cmeta:id attribute (where the cmeta prefix is mapped to the CellML Metadata namespace URI
defined in Section 2.2.2) may be defined on any CellML element. A cmeta:id attribute may also
be defined on extension elements for which no attribute of type ID is declared in the DTD, schema or
language specification.

[On MathML elements, the mathml:id attribute must be used. A cmeta:id attribute must specif-
ically not be added to MathML elements because a given element may only contain one attribute of
type ID.]

8.4.2 The <rdf:RDF> element

1. Allowed use of the <rdf:RDF> element

• Any CellML element may contain any number of <rdf:RDF> elements.

[Metadata may appear on any CellML element and may be split across multiple <rdf:RDF>
elements. The recommended practice is to enclose all metadata relevant to a particular resource
in a single <rdf:RDF> element. In this and subsequent rules, the use of the rdf prefix indi-
cates that elements and attributes are in the RDF namespace.]

• The content of an <rdf:RDF> element must conform to the Resource Description Framework
(RDF) Model and Syntax Specification36 recommendation from the W3C.

[For interoperability, the abbreviated syntax defined in the RDF recommendation should be
avoided. However an rdf:parseType attribute with a value of "Resource" can be added
to non-RDF elements to create anonymous resources within an <rdf:RDF> element.]

8.5 Rules for Processor Behaviour

8.5.1 Treatment of cmeta:id attributes

CellML processing software must treat any cmeta:id attributes in a CellML document (where the cmeta
prefix is mapped to the CellML Metadata namespace URI defined in Section 2.2.2) as if they’re of type ID.
This has the following consequences for CellML documents:

• A cmeta:id attribute must not be defined on a non-CellML element for which the DTD, schema or
language specification has already declared an attribute of type ID.

• The values of all cmeta:id attributes and any other attributes of type ID in a given CellML docu-
ment must be unique.

• The values of all cmeta:id attributes in a CellML document are potential targets for the values of
rdf:about attributes on <rdf:Description> elements.

8.5.2 General meaning of metadata

Metadata may refer to the CellML document, the CellML model, or a specific element within the CellML
model. The following list documents the intended meaning of metadata on each of these resources. More
detailed information can be found in the CellML Metadata Specification37.

36http://www.w3.org/TR/1999/REC-rdf-syntax-1999022
37http://www.cellml.org/public/metadata/index.html

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 79

• Metadata that refers to the CellML document provides information relevant to the document as a
whole, independent from the use of the document to specify a model. Examples of metadata that
might appear on a CellML document are last modified date (date on which the document was last
edited) and publisher (person or organization distributing the document).

• Metadata that refers to the CellML model provides information relevant to the model as a whole.
For instance, the model author is the person who created the complete model, even if some of the
components were taken from a shared database and have different authors.

• Metadata that refers to a specific CellML element provides information about that element only. It
does not provide information about elements that are contained in the referenced element.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 81

9 Importing Models

9.1 Introduction

The modular structure of CellML seen so far can be taken up one level to make it easier to build a model
on previously published models. Often in systems biology, molecular behaviour is researched, modelled,
and described in steps. One (group of) scientist(s) will model the flux of ions across a cell membrane, for
instance, limiting their study to certain variables. Others will build on the first’s work, expanding the focus
of the study, and so on. To reflect a realistic method of model building, a CellML modeller may choose to
use the import features described below.

9.2 Basic Structure

9.2.1 Definition of imported models

To be able to reuse a model, the model must first be imported into the current model. The <cellml:import-
model> element is used to locate the model that will be imported. The CellML import feature makes use

of the W3C hyperlink standard, XLink38, to identify the link between the current model and the model
being imported. Each <cellml:import model> element must have an xlink:title attribute and
an xlink:href attribute. The xlink and cellml namespace prefixes are used throughout this sec-
tion to indicate that the elements are in the XLink and CellML namespaces, respectively. The value of the
xlink:title attribute is a CellML identifier which must be unique amongst all <cellml:import model>
elements within the current model. It need not be equal to the value of the cellml:name attribute of the
root <cellml:model> element of the imported model. The xlink:href attribute has a value equal to
the Uniform Resource Identifier that identifies the location of the imported cell model. Throughout the cur-
rent CellML model, the value of the xlink:title attribute will be used to point to the model identified
by the value of the xlink:href attribute. A model may import any number of valid CellML models.

9.2.2 Referencing units from an imported model

Units from an imported model may be called in the current model by use of the cellml:units model
attribute. Any cellml:units attribute may be clarified by tagging a cellml:units model attribute
to the same element the cellml:units attribute qualifies. If the cellml:units model attribute is
present, the units referenced by the cellml:units attribute must be a globally defined units in the model
referenced by the cellml:cellmlunits model attribute.

9.2.3 Mapping variables between models

Variables can be mapped between models in much the same way as mapping variables between components
in a model. Variables must still be mapped through components, and connections can be made between
two models’ components by using the cellml:model 1 and cellml:model 2 attribute qualifiers
on a <cellml:map components> element. If the cellml:model 1 attribute is present, the model
referenced must contain the component referenced by the cellml:component 1 attribute on the same
element. Similarly, the model referenced by the cellml:model 2 attribute, if present, must contain the
component referenced by the cellml:component 2 attribute on the same element.

38http://www.w3.org/TR/2001/REC-xlink-20010627/

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 82

9.3 Examples

Figure 17 shows the use of the <cellml:import model> element to import a CellML model located
at
http://www.example.com/units.xml that contains two units definitions: one with the name of
microF and another named microA per microF. The imported model is aliased to the name units-
dictionary so that when a cellml:units model attribute calls the alias, a processor knows in

which document to look for the corresponding units.
When a connection is made between the membrane component and another imported model, the

cellml:model 1 attribute is tagged to the <cellml:map components> element to indicate that
the component referenced by the cellml:component 1 attribute can be found in the model aliased
to the name sodium current component. In this example, the model containing the membrane
component, cellml:component 2, is the current model; therefore, no cellml:model 2 attribute is
necessary.

<model
xmlns="http://www.cellml.org/cellml/1.1#"
xmlns:xlink="http://www.w3.org/1999/xlink">

<import_model
xlink:href="http://www.example.com/units.xml"
xlink:title="units_dictionary" />

<import_model
xlink:href="http://www.example.com/sodium_current_component.xml"
xlink:title="sodium_current_component" />

<component name="membrane">
<variable name="Cm" units="microF" units_model="units_dictionary" />
<variable

name="I_st" units="microA_per_microF" units_model="units_dictionary" />
...

</component>

<connection>
<map_components

component_1="sodium_current" component_2="membrane"
model_1="sodium_current_component" />

<map_variables variable_1="V" variable_2="V" />
<map_variables variable_1="constant_T" variable_2="T" />

</connection>

</model>

FIGURE 17: The <cellml:import model> identifies the URI of the file being imported and gives the
model a name by which it will be referred in the current model. See text for more details.

9.4 Rules for CellML Documents

9.4.1 The <import model> element

1. Allowed use of the <import model> element

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 83

• A <cellml:import model> element must contain only the following elements:

– <RDF> elements in the RDF namespace.

• Each <cellml:import model> element must define an xlink:title attribute and an
xlink:href attribute.

[In this and subsequent rules, the cellml and xlink prefixes are used to indicate that ele-
ments and attributes are in the CellMl and XLink namespaces, respectively.]

2. Proper use of the <cellml:import model> element

• A model must not import a model that directly or indirectly imports itself.

[The model tree must be acyclic.]

3. Allowed values of the xlink:title attribute

• The value of the xlink:title attribute must be a valid CellML identifier as discussed in
Section 2.2.1.

• The value of the xlink:title attribute must be unique across all <cellml:import model>
elements contained in the parent <cellml:model> element.

4. Allowed values of the xlink:href attribute

• The value of the xlink:href attribute must be a valid Uniform Resource Identifier39.

9.5 Rules for Processor Behaviour

9.5.1 Treatment of imported models

CellML processing software must include the imported models in the current model. Values of every name
attribute in the imported models must be qualified with the value of the xlink:title attribute associated
with the imported model.

39http://www.ietf.org/rfc/rfc2396.txt

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 85

A Using The CellML 1.0 DTD

A.1 Introduction

This section contains some recommendations on the use and referencing of the CellML 1.1 DTD, the full
text of which is given in Appendix A.6. The document rules and processor behaviour described in this
section are not required in valid CellML documents and from CellML conformant processing software,
respectively.

A.2 The CellML DOCTYPE declaration

CellML documents may reference the version of the CellML 1.1 DTD maintained on the CellML website
with a DOCTYPE declarations of the following form:

<!DOCTYPE model SYSTEM "http://www.cellml.org/cellml/cellml_1_1.dtd">

“model” may be changed to match the root element of the CellML document.
CellML document authors may change the value of the system identifier to point to a copy of the

DTD cached on a local filesystem if this is available. This specification does not define a public identifier
for CellML 1.0. For interoperability, CellML document authors should not define one unless specifically
needed for a parser that makes use of SGML catalog files.

A.3 CellML without a DTD

CellML documents are not required to contain a DOCTYPE declaration. In the absence of a DTD, CellML
processing software needs to take into account the following important points:

• All cmeta:id attributes are of type ID.

• All id attributes on MathML elements are of type ID.

The CellML DTD does not define the default values for CellML attributes that are defined in the speci-
fication. With or without a DTD, CellML processing software is responsible for setting these values, if not
specified.

A.4 Use of MathML within CellML

The CellML 1.1 DTD can be used in conjunction with the MathML 2.0 DTD40 to validate any MathML
content within a CellML document. The CellML DTD contains a reference to the MathML 2.0 DTD,
which is maintained at the World Wide Web Consortium’s website41, inside a conditional section, which by
default is not included in the CellML DTD. CellML document authors may cause the conditional section
to be included by setting the value of the “use mathml dtd” entity to “INCLUDE” inside the internal
subset of their CellML document, as shown below:

<!DOCTYPE model SYSTEM "http://www.cellml.org/cellml/cellml_1_1.dtd" [
<!ENTITY % use_mathml_dtd "INCLUDE">

]>

40http://www.w3.org/TR/MathML2/dtd/mathml2.dtd
41http://www.w3.org/

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 86

If copies of both the CellML 1.1 DTD and the MathML 2.0 DTD are available on the local filesystem,
it is possible to conveniently override the reference to the MathML 2.0 DTD by setting the value of the
“mathml dtd path” entity to the appropriate relative path from the CellML DTD to the MathML DTD,
as shown below:

<!DOCTYPE model SYSTEM "/my/local/copy/of/the/cellml_1_1.dtd" [
<!ENTITY % mathml_dtd_path "’relative/path/to/mathml2.dtd’">
<!ENTITY % use_mathml_dtd "INCLUDE">

]>

The MathML 2.0 DTD is not on the CellML website, so DOCTYPE declarations of this form will fail
when referencing the DTD on the CellML website. The MathML 2.0 DTDs are available as a ZIP archive,
a link to which is given in Appendix A.6 of the MathML 2.0 Recommendation42.

The CellML specification requires a cellml:units attribute to be defined on all <mathml:cn>
elements (where the cellml and mathml prefixes are mapped to the URIs for the CellML and MathML
namespaces, respectively). For this reason, the conditional section of the CellML DTD in which the
MathML DTD is referenced also redeclares the list of attributes on the <mathml:cn> element to in-
clude the cellml:units attribute. This will prevent XML parsers from finding errors when validating
valid CellML documents against the MathML DTD.

A.5 Treatment of namespaces

In Section 2.2.2, it was suggested that the root element of a CellML document set the default namespace
and map the cellml prefix to the CellML namespace URI. Use of unprefixed element names (i.e., default
namespaces) is encouraged to ensure DTD-based validation will work correctly. The CellML 1.1 DTD de-
fines three optional attributes on every CellML element that can be used to set namespaces where necessary.
These are xmlns, xmlns:cellml and xmlns:cmeta.

A.6 The CellML 1.1 DTD

The CellML 1.1 DTD is available at the following URI:

http://www.cellml.org/cellml/cellml 1 1.dtd

The CellML 1.1 DTD does not attempt to declare or reference declarations for the metadata framework
elements in the RDF namespace. It also doesn’t declare the default values of any of the attributes on the
CellML elements.

For convenient reference, the text of the DTD is given below.

<!--
FILE : cellml_1_1.dtd

CREATED : 26 August 2002

LAST MODIFIED : 29 September 2003

AUTHOR : Autumn A. Cuellar (a.cuellar@auckland.ac.nz)
Warren Hedley
The Bioengineering Institute
The University of Auckland

42http://www.w3.org/TR/2001/REC-MathML2-20010221/appendixa.html#parsing dtd

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 87

DESCRIPTION : This document contains a DTD corresponding to the syntax rules
defined in the Developer’s Specification for CellML 1.1. This
specification is available at

http://www.cellml.org/private/specification/unstable/index.html

SYSTEM IDENTIFIER : http://www.cellml.org/cellml/cellml_1_1.dtd

COPYRIGHT : (2002) Bioengineering Institute, The University of Auckland.
-->

<!ENTITY % use_mathml_dtd "IGNORE">
<![%use_mathml_dtd;[

<!ENTITY % mathml-charent.module "IGNORE">
<!ENTITY % mathml_dtd_path

"’http://www.w3.org/TR/MathML2/dtd/mathml2.dtd’">
<!ENTITY % mathml_dtd PUBLIC "-//W3C//DTD MathML 2.0//EN"

%mathml_dtd_path;>

%mathml_dtd;

<!ATTLIST %cn.qname;
%MATHML.Common.attrib;
%att-type;
%att-base;
%att-definition;
%att-encoding;
cellml:units CDATA #REQUIRED

>
]]>

<!ENTITY % cellml_common_attributes "
xmlns CDATA #IMPLIED
xmlns:cellml CDATA #IMPLIED
xmlns:cmeta CDATA #IMPLIED
cmeta:id ID #IMPLIED

">

<!ELEMENT model (import | units | component | group | connection)*>
<!ATTLIST model

%cellml_common_attributes;
name CDATA #REQUIRED

>

<!ELEMENT import (units | component)*>
<!ATTLIST import

%cellml_common_attributes;
xlink:type (simple) #FIXED "simple"
xlink:href CDATA #REQUIRED

>

<!ELEMENT component (units | variable | reaction | math)*>
<!ATTLIST component

%cellml_common_attributes;
name CDATA #REQUIRED
component_ref CDATA #IMPLIED

>

<!ELEMENT variable EMPTY>

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 88

<!ATTLIST variable
%cellml_common_attributes;
name CDATA #REQUIRED
public_interface (in|out|none) #IMPLIED
private_interface (in|out|none) #IMPLIED
units CDATA #REQUIRED
initial_value CDATA #IMPLIED

>

<!ELEMENT connection (map_components | map_variables+)>
<!ATTLIST connection

%cellml_common_attributes;
>

<!ELEMENT map_components EMPTY>
<!ATTLIST map_components

%cellml_common_attributes;
component_1 CDATA #REQUIRED
component_2 CDATA #REQUIRED

>

<!ELEMENT map_variables EMPTY>
<!ATTLIST map_variables

%cellml_common_attributes;
variable_1 CDATA #REQUIRED
variable_2 CDATA #REQUIRED

>

<!ELEMENT units (unit*)>
<!ATTLIST units

%cellml_common_attributes;
name CDATA #REQUIRED
units_ref CDATA #IMPLIED
base_units (yes|no) #IMPLIED

>

<!ELEMENT unit EMPTY>
<!ATTLIST unit

%cellml_common_attributes;
multiplier CDATA #IMPLIED
prefix CDATA #IMPLIED
units CDATA #REQUIRED
exponent CDATA #IMPLIED
offset CDATA #IMPLIED

>

<!ELEMENT group (relationship_ref | component_ref)+>
<!ATTLIST group

%cellml_common_attributes;
>

<!ELEMENT relationship_ref EMPTY>
<!ATTLIST relationship_ref

%cellml_common_attributes;
relationship (encapsulation|containment) #IMPLIED

>

<!ELEMENT component_ref (component_ref*)>
<!ATTLIST component_ref

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 89

%cellml_common_attributes;
component CDATA #REQUIRED

>

<!ELEMENT reaction (variable_ref+)>
<!ATTLIST reaction

%cellml_common_attributes;
reversible (yes|no) #IMPLIED

>

<!ELEMENT variable_ref (role+)>
<!ATTLIST variable_ref

%cellml_common_attributes;
variable CDATA #REQUIRED

>

<!ELEMENT role (math?)>
<!ATTLIST role

%cellml_common_attributes;
role (reactant|product|activator|catalyst|inhibitor|modifier|rate) #REQUIRED
direction (forward|backward|both) #IMPLIED
delta_variable CDATA #IMPLIED
stoichiometry CDATA #IMPLIED

>

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 91

B Scripting functionality in CellML

B.1 Introduction

MathML can be extended by defining new operators, the behaviour of which is not defined in MathML.
These operators could be used to call functions implemented in software (i.e., implicitly) or defined using
a scripting language (i.e., explicitly). CellML 1.1 does not require processing software to implement sup-
port for scripting functionality. This section contains some recommendations on best practices for adding
scripting functionality to CellML.

For the purposes of this discussion, it is assumed that scripting functionality will be implemented via
function calls. Software that extends the functionality of MathML in other ways should extrapolate these
recommendations as appropriate.

B.2 Availability of scripts

Functions referenced in a CellML document that are defined using non-MathML syntax should be identified
by, and accessible via, a URI. A function could, for instance, be accessible via HTTP from a database using
a CGI script that takes an SQL expression as an argument.

B.3 Embedding scripts in CellML

Functions should be defined within elements in an application-specific extension namespace, if the func-
tions are embedded within CellML documents. If the embedded script is only referenced by a single
component, the script should be defined within the corresponding <cellml:component> element. If
the embedded script is referenced by more than one component, the script should be defined within the
<cellml:model> element.

B.4 Preferred scripting language

Implementors considering adding scripting functionality to CellML processing software are encouraged to
use ECMAScript. It is anticipated that, if scripting functionality is officially endorsed by a future version
of CellML, ECMAScript will be the scripting language that processing software is required to implement.
ECMAScript is the recommended language because it is simple, standardised, and open source interpreting
libraries are freely available.

ECMA43 is an international industry association that develops standards in information and communica-
tion for the European union. ECMA took the scripting language that Netscape44 developed for adding inter-
active content to its web browser and developed the formal language specification ECMA-262 (ECMAScript
Language Specification)45.

B.5 Referencing scripts from MathML

The MathML 2.0 Recommendation46 defines a <mathml:csymbol> element for referencing mathemat-
ical symbols and constructs that are not defined by MathML. This element should be used for referencing
functions defined using non-MathML syntax from within blocks of MathML. Processing software should
take into account the following recommendations regarding the use of the <mathml:csymbol> element
for this purpose.

43http://www.ecma.ch/
44http://www.netscape.com/
45http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
46http://www.w3.org/TR/2001/REC-MathML2-20010221

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 92

B.5.1 The <mathml:csymbol> element

1. Recommended use of the <mathml:csymbol> element

• The <mathml:csymbol> element should only appear as the first child element within a
<mathml:apply> element.

[A <mathml:csymbol> element should only be used as an operator, which is “applied” to
some arguments.]

• After leading and trailing whitespace is removed, the content of a <mathml:csymbol> el-
ement must be a valid CellML identifier as discussed in Section 2.2.1. This identifier must
accurately represent the external function referenced.

[The content of a <mathml:csymbol> element should preferably be a human-readable iden-
tifier for the external function. If the function is defined using a common scripting or program-
ming language, then this identifier should be the name of the function.]

• Each <mathml:csymbol> element should define a definitionURL and an encoding
attribute.

2. Recommended use of the mathml:definitionURL attribute

• The value of the definitionURL attribute should be a valid URI that identifies a single
resource containing the definition of the external function.

3. Recommended use of the mathml:encoding attribute

• The value of the encoding attribute should indicate to processing software the format of the
externally defined function.

[In the version of CellML that describes how external functions are to be defined within the
CellML framework, the encoding attribute will be moved into the CellML namespace and
will be required to take a value from a controlled vocabulary.]

B.6 Effects of scripts

Functions must be side-effect free. That is, a function must not assign values to variables that are not local
to that function. In particular, functions must not alter the values of their arguments or global variables.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 93

C Advanced Units Functionality

C.1 Introduction

CellML 1.1 lays the foundations of a flexible and robust system for the association of units with variables
and constants in cellular models. However, it does not require software to make use of the units information
contained in CellML documents. This section presents algorithms and examples demonstrating some of the
advanced features related to units that CellML processing software might choose to offer modellers. For
interoperability, CellML processing software that includes these features should achieve the same results as
the algorithms described here, although the exact implementation may differ.

C.2 Terminology

C.2.1 Equivalence of units references

Two units references are considered equivalent if they satisfy one of the following criteria:

• They reference the same units definition from the standard dictionary.

• They reference the same units definition in the current <component> element.

• They reference the same units definition in the current <model> element, where that units definition
is not superseded by a units definition with the same name in the current <component> element.

C.2.2 Dimensional equivalence of units definitions

Two units definitions have dimensional equivalence if, when each is recursively expanded and simplified
until left with nothing but products of SI and user-defined base units:

• the expanded form of each units definition consists of the same set of base units, and

• the exponent on each base unit is identical in each expanded units definition.

Algorithms for the expansion and simplification of units definitions are given in Appendix C.3.4 and
Appendix C.3.1, respectively.

C.3 Algorithms

C.3.1 Simplification of units definitions

It is frequently convenient to be able to simplify a units definition, where this units definition is the result
of the application of some mathematical operator to terms which have units associated with them. These
operators include the <times>, <divide> and <diff> operators.

The simplification of a units definition is an iterative process in which the number of other units defini-
tions referenced is systematically reduced. References to units definitions may be removed in the following
cases:

• If two units references are equivalent (as defined in Appendix C.2.1) and have exponents with equal
and opposite value, then they may be replaced by a reference to dimensionless.

• If two units references are equivalent (as defined in Appendix C.2.1) then they may be replaced with
a single units reference to the same units, where the exponent associated with that units reference is
the sum of the exponents on the original two units references.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 94

• If a units definition references dimensionless one or more times in addition to some other units,
any references to dimensionless may be removed.

• If a units definition references dimensionless one or more times and references no other units,
the definition may be replaced with dimensionless.

The above rules only allow the removal of units references that are equivalent as defined in Appendix C.2.1.
This scheme would not allow references to identical units definitions in two different components to be can-
celled and removed, because the references would not satisfy the equivalence criteria.

C.3.2 Units-based restrictions on the use of MathML operators

This section describes restrictions on the units associated with a collection of terms to which each MathML
operator in the CellML set (defined in Section 4.2.3) can be applied. For instance, the <mathml:plus>
operator can only be applied to terms that have dimensionally equivalent units. The restrictions invalidate
the application of certain MathML operators to certain collections of terms based on their units, and are
used in equation dimension checking, as described in Appendix C.3.6.

The restrictions are given in Table 5. The <mathml:root>,<mathml:diff> and <mathml:log>
elements all take qualifiers, in addition to operands.

C.3.3 Applying operators to units definitions

The section defines the units resulting from the application of MathML operators to a collection of terms,
each with known units. This is needed for units definition conversion and equation dimension checking,
as described in Appendix C.3.5 and Appendix C.3.6, respectively. The units on each of the terms in the
collection must satisfy the restrictions defined in Appendix C.3.2 for the current operator.

The full set of units calculation rules are described in Table 6.

C.3.4 Expansion of units definitions

This section presents the recommended algorithm for expanding a given units definition into an expression
that relates the defined units to only SI and user-defined base units. This algorithm may be used in the
conversion of units definitions and equation dimension checking, algorithms for which are defined in Ap-
pendix C.3.5 and Appendix C.3.6, respectively. Examples of the expansion of units definitions are given in
Appendix C.4.2.

The specific steps in the algorithm depend on whether the units definition to be expanded is simple or
complex, as defined in Section 5.2.2. Both derivations use recursive methods. At each step, any units that
are not base units are replaced with expansions based on the appropriate definition.

Expansion of simple units definitions

The formula relating a variable xU with units of U (where U are simple units), to a variable x1 with units of
u1 (the subunits referenced by the units attribute on the <unit> element inside the units definition for
U), is given in Equation (9). This is based on the simple units definition formula given in Equation (3).

xU [U] = (m1 p1)

[

U
u1

]

x1 [u1] + o1 [U] (9)

m1, p1 and o1 correspond to the multiplier, prefix and offset attributes on the <unit> ele-
ment, respectively.

The formula relating a variable with units of u1 to its subunits u2, as referenced in the units definition
for u1, is given in Equation (10).

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 95

Operator Restrictions
<times>, <divide>, <abs>,
<floor>, <ceiling>

There are no restrictions on the units of
operands for these operators.

<eq>, <neq>, <gt>, <lt>, <geq>,
<leq>, <plus>, <minus>

These operators, if applied to more than
one operand, require all of their operands
to have either equivalent units references,
as defined in Appendix C.2.1, or to refer-
ence units that have dimensional equiva-
lence, as defined in Appendix C.2.2.

<and>, <or>, <xor>, <not> These operators require their operands to
have units of cellml:boolean, as de-
fined in Section 5.5.2.

<exp>, <ln>, <factorial>,
<sin>, <cos>, <tan>, <sec>,
<csc>, <cot>, <sinh>, <cosh>,
<tanh>, <sech>, <csch>,
<coth>, <arcsin>, <arccos>,
<arctan>, <arccosh>, <arccot>,
<arccoth>, <arccsc>, <arccsch>,
<arcsec>, <arcsech>, <arcsinh>,
<arctanh>

These operators require their operands to
have units of dimensionless.

<power> This is a binary arithmetic operator. Its
first operand may have any units, and
its second operand must have units of
dimensionless.

<root> This is a qualified unary operator. Its
operand may have any units. The
value of the <degree> qualifier ele-
ment, if present, must have units of
dimensionless.

<log> This is a qualified unary opera-
tor. Its operand must have units of
dimensionless. The value of the
<logbase> qualifier element, if present,
must have units of dimensionless.

<diff> The operand of this operator and the
value of the <bvar> qualifier element, if
present, may have any units. The value
of a <degree> qualifier element within
the <bvar> qualifier element, if present,
must have units of dimensionless.

TABLE 5: The restrictions on the units associated with operands and qualifiers for each MathML operator.
All elements in this table are in the MathML namespace.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 96

Operator Result Units
<eq>, <neq>, <gt>, <lt>, <geq>,
<leq>, <and>, <or>, <xor>, <not>

The result of these operators has units of
cellml:boolean.

<exp>, <ln>, <log>, <factorial>,
<sin>, <cos>, <tan>, <sec>,
<csc>, <cot>, <sinh>, <cosh>,
<tanh>, <sech>, <csch>,
<coth>, <arcsin>, <arccos>,
<arctan>, <arccosh>, <arccot>,
<arccoth>, <arccsc>, <arccsch>,
<arcsec>, <arcsech>, <arcsinh>,
<arctanh>

The result of these operators has units of
dimensionless.

<plus>, <minus>, <abs>, <floor>,
<ceiling>

The result of these operators has the same
units as the operands.

<times> The result of this operator has units
that are the product of the units on the
operands. This product may be simpli-
fied according to the rules outlined in Ap-
pendix C.3.1.

<divide> The result of this operator has units that
are the quotient of the units on the first
and second operands. This quotient may
be simplified according to the rules out-
lined in Appendix C.3.1.

<power> The result of this operator has units
that are the units on the first operand
raised to the power of the second
operand. If the first operand has units
of dimensionless, the result also has
units of dimensionless.

<root> The result of this operator has units that
are the units on the first operand raised to
one over the value of the <degree> qual-
ifier element (the default value of which
is 2.0). If the first operand has units
of dimensionless, the result also has
units of dimensionless.

<diff> The result of this operator has units that
are the quotient of the units of the operand
over the units of the term in the <bvar>
qualifier element raised to the value of
the <degree> qualifier element inside
the <bvar> qualifier element (the default
value of which is 1.0). This quotient may
be simplified according to the rules out-
lined in Appendix C.3.1.

TABLE 6: The units of the result after applying each MathML operator to a collection of terms, where the
units on those terms satisfy the restrictions in Appendix C.3.2. All elements in this table are in the MathML

namespace.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 97

x1 [u1] = (m2 p2)

[

u1

u2

]

x2 [u2] + o2 [u1] (10)

Equation (10) can be substituted into Equation (9) to give Equation (11).

xU [U] = (m1 p1)

[

U
u1

](

(m2 p2)

[

u1

u2

]

x2 [u2] + o2 [u1]

)

+ o1 [U] (11)

The expression defining each new set of units in terms of its subunits can be substituted into the current
expression recursively until an expression is reached that relates xU to xn with units un, which are SI
or user-defined base units. At this point expansion stops, and the resulting expression can be simplified.
This simplification combines multiplier, prefix and offset terms and combines their units based on the rules
defined in Appendix C.3.3. The result is an expression of the form given in Equation (12).

xU [U] = mt

[

U
un

]

xn [un] + ot [U] (12)

The values of mt and ot are given by Equation (13) and Equation (14), respectively.

mt = (m1 p1) . . . (mn pn) (13)

ot = m1 p1 (o2 + m2 p2 (o3 + . . . + mn−1 pn−1 on)) (14)

Expansion of complex units definitions

The formula relating a variable xU with complex units U to a variable xA with units that are the product of
the subunits referenced in the units definition for U is given in Equation (15). This is based on the complex
units definition formula given in Equation (4).

xU [U] = (mA1 . . . mAn pA1
eA1 . . . pAn

eAn)

[

U
uA1

eA1 . . . uAn
eAn

]

xA [uA1
eA1 . . . uAn

eAn] (15)

The mAi, pAi, uAi and eAi refer to the values of the multiplier, prefix, units and exponent
attributes on the i-th <unit> element inside the units definition for U, respectively. If, at the first step, the
c-th set of units referenced is not SI or user-defined base units, the formula relating uAc to the c-th set of
units referenced to its subunits is given in Equation (16).

xC [uAc] = (mB1 . . . mBn pB1
eB1 . . . pBn

eBn)

[

U
uB1

eB1 . . . uBn
eBn

]

xB [uB1
eB1 . . . uBn

eBn] (16)

Note that if uAc is a simple units definition, then the right hand side of Equation (16) will take the form
of a simple units definition, but without the constant offset term.

An expansion for xA that incorporates the expansion for uAc is obtained by multiplying both sides of
Equation (16) by unitary coefficients with units of the product of all of the units referenced on the right
hand side of Equation (15) with the exception of uAc. Expansion of units definitions involves constructing
expansions for the variable on the right hand side. The expansion continues recursively as long as any of the
units on the right hand side of Equation (15) are not SI or user-defined base units. The resulting expansion
can be simplified by combining multiplier and prefix terms to give an expression with the form given in
Equation (17).

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 98

xU [U] = mt

[

U
uA1

eA1 . . . uZn
eZn

]

xZ [uA1
eA1 . . . uZn

eZn] (17)

uIi corresponds to the units referenced by the i-th units definition referenced in the I-th definition to be
expanded, and mt is given by Equation (18).

mt = mA1 . . . mZn pA1
eA1 . . . pZn

eZn (18)

mIi, pIi and eIi correspond to the values of the multiplier, prefix and exponent attributes on
the i-th <unit> element in the I-th definition to be expanded.

C.3.5 Conversion between units definitions

This section presents an algorithm that specifies a possible method for converting a variable’s value from
one set of units to another. An example demonstrating the use of this algorithm is given in Appendix C.4.3.

If the two variable declarations that are to be mapped both reference equivalent units definitions as
defined in Appendix C.2.1, then there is a one-to-one mapping between the variable’s value in both compo-
nents.

If the two variable declarations that are to be mapped reference different units definitions, then software
may choose to calculate a conversion formula as follows. Given a variable x with units Ux, the value of
which is to be passed to a variable y with units Uy, the following steps should be followed:

1. The units definitions for Ux and Uy are fully expanded and simplified according to the algorithm
presented in Appendix C.3.4. This yields expressions for x and y in terms of xn and yn, the units of
which are products of only SI and user-defined base units. The expression for x will be of the form
given in Equation (19) if Ux is a simple units definition, or of the form given in Equation (20) if Ux is
a complex units definition.

x [Ux] = mt

[

Ux

ux

]

xn [ux] + ot [Ux] (19)

x [Ux] = mt

[

Ux

ux

]

xn [ux] (20)

In Equation (19), ux corresponds to the base units referenced in the full expansion of Ux, whereas in
Equation (20), ux corresponds to the product of all of the base units in the full expansion raised to the
appropriate exponents.

2. It should be considered an error if the units for xn (ux) and yn (uy) do not have equivalent dimensions
as defined in Appendix C.2.2.

3. The expansion of x is inverted to give an expression for xn. The inverted forms of Equation (19) and
Equation (20) are given in Equation (21) and Equation (22), respectively.

xn [ux] =
1

mt

[

ux

Ux

]

(x [Ux] − ot [Ux]) (21)

xn [ux] =
1

mt

[

ux

Ux

]

x [Ux] (22)

The appropriate expression for xn can then be substituted for yn in the expansion of y. This yields an
equation for y in terms of x, which can be used to convert variable values.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 99

C.3.6 Equation dimension checking

This section presents an algorithm that can be used to verify that an equation is consistent with respect to the
dimensions of the units definitions referenced by all numbers and variables. An example that demonstrates
the process of equation dimension checking for an equation defined in MathML and CellML is given in
Appendix C.4.4.

This algorithm relies on the restrictions and behaviour of the different operators with respect to units de-
fined in Appendix C.3.2 and Appendix C.3.3. Future versions of the specification may extend this algorithm
to handle other operators. The steps in the algorithm are:

1. The equation is split into a tree of terms, in which each parent term is obtained by the application of a
single operator to its children. The root of the tree is the entire equation, which is created by applying
a relational operator (typically the equals operator) to its child terms. All other terms in the tree are
created by applying arithmetic operators to child terms.

2. The units definitions for the terms at the leaves of the tree (which will be variables, numbers, or
MathML constants elements) are expanded into functions of the SI and user-defined base units, using
the algorithm presented in Appendix C.3.4.

3. Starting at the leaves of the tree, sets of child terms are recursively removed from the tree and units
assigned to the parent terms. The removal of each set of terms follows the following steps:

(a) The child terms are compared against the restrictions described in Appendix C.3.2 for the current
operator. It should be considered an error if they do not satisfy these restrictions, in which case
the equation has inconsistent dimensions.

(b) Units are assigned to the parent term as defined in Appendix C.3.3 for the current operator.

4. The equation has self-consistent dimensions if no inconsistencies were found during the recursive
removal of child terms during the traversal from leaves to root.

C.4 Examples

C.4.1 User-defined units and new base units

In Figure 18, the example units definitions given in Section 5.3 are reproduced. These examples are used in
the subsequent advanced examples.

C.4.2 Expansion of user-defined units

In this section, the expansion of user-defined units according to the algorithm described in Appendix C.3.4
is demonstrated for each of the units definitions given in Figure 18.

The first <units> element in Figure 18 defines units named pH, and defines a base units attribute
with a value of "yes". This indicates that it should be treated by processing software as if it were an SI
base unit, and that it cannot be expanded.

The definition of inch in Figure 18 is a simple units definition as it references only a single unit with an
exponent of one. When the appropriate terms are substituted into Equation (3), the conversion from metre
to inch is given by Equation (23). metre is a SI base unit, so no further expansion is necessary.

xnew [inch] =
(

2.54 10−2
)

[

inch
metre

]

xold [metre]

= 0.0254

[

inch
metre

]

xold [metre]

(23)

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 100

<!-- User-defined Base Units -->
<units name="pH" base_units="yes" />

<!-- Simple Units Definitions -->
<units name="inch">

<unit multiplier="2.54" prefix="centi" units="metre" />
</units>

<units name="fahrenheit">
<unit multiplier="1.8" units="celsius" offset="32.0" />

</units>

<!-- Complex Units Definitions -->
<units name="celsius_per_centimetre">

<unit units="celsius" />
<unit prefix="centi" units="metre" exponent="-1" />

</units>

<units name="fahrenheit_per_inch">
<unit units="fahrenheit" />
<unit units="inch" exponent="-1" />

</units>

<units name="pH_per_celsius">
<unit units="pH" />
<unit units="celsius" exponent="-1" />

</units>

FIGURE 18: Some examples of the use of the <units> element demonstrating the definition of simple and
complex units.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 101

The definition of fahrenheit is in terms of celsius, which is an SI derived unit. The expansion
from celsius to kelvin, an SI base unit, is obtained from Section 2.1.1.5 of the SI standard, and is
given in Equation (24).

xnew [celsius] = 1.0

[

celsius
kelvin

]

xold [kelvin] − 273.15 [celsius] (24)

The first step in the expansion of the fahrenheit definition is given in Equation (25).

xf [fahrenheit] = 1.8

[

fahrenheit
celsius

]

xc [celsius] + 32.0 [fahrenheit] (25)

The xc term can be replaced with the expansion of the celsius definition from Equation (24), as
shown in Equation (26).

xf [fahrenheit] = 1.8
[

fahrenheit

celsius

] (

1.0
[

celsius

kelvin

]

xk [kelvin] − 273.15 [celsius]
)

+ 32.0 [fahrenheit] (26)

The 1.0 and 273.15 terms can be multiplied by the 1.8. The units on the resulting terms are the products
of the units on the operands, as described in Appendix C.3.3, and these can be simplified according to the
rules given in Appendix C.3.1. The final expansion of fahrenheit is given in Equation (27)

xf [fahrenheit] = 1.8

[

fahrenheit
kelvin

]

xk [kelvin] − 491.67 [fahrenheit] + 32.0 [fahrenheit]

= 1.8

[

fahrenheit
kelvin

]

xk [kelvin] − 459.67 [fahrenheit]

(27)

celsius per centimetre is the first of the complex units definitions given in Figure 18. The first
step in the expansion of this definition is given by Equation (28), which is obtained by substituting the
appropriate terms in Equation (4).

xnew [celsius per centimetre] =
(

10−2
)

−1

[

celsius per centimetre

celsius metre−1

]

xold

[

celsius metre−1
]

(28)

The expansion of the xold term, which has units that are a product, is not obvious. This term must be
expanded to continue. metre is an SI base unit, so need not be expanded. However, celsius is an SI
derived unit, the expansion of which is given in Equation (24). Because this expansion is to be substituted
into a complex units definition, the offset term is dropped. The next step in the expansion makes use of the
modified celsius definition in Equation (29) and the identity in Equation (30).

vnew [celsius] = 1.0

[

celsius
kelvin

]

vold [kelvin] (29)

ynew

[

metre−1
]

= 1.0

[

metre−1

metre−1

]

yold

[

metre−1
]

(30)

The result of multiplying Equation (30) and Equation (29) is given in Equation (31).

vnew [celsius] ynew

[

metre−1
]

= 1.0

[

celsius
kelvin

]

vold [kelvin] 1.0

[

metre−1

metre−1

]

yold

[

metre−1
]

(31)

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 102

The vnew and ynew variables can be multiplied together to produce a new unknown znew which has units
which are the product of the units on vnew and ynew. Similarly zold is the product of vold and yold. The result
is given in Equation (32), where the scale factors have also been multiplied.

znew

[

celsius metre−1
]

= 1.0

[

celsius metre−1

kelvin metre−1

]

zold

[

kelvin metre−1
]

(32)

znew from Equation (32) can be substituted in place of Equation (28), and the result simplified to give
the complete expansion of celsius per centimetre shown in Equation (33).

xnew [celsius per centimetre] =
(

10−2
)

−1
[

celsius per centimetre

celsius metre−1

]

xold

[

celsius metre
−1

]

= 100.0
[

celsius per centimetre

celsius metre−1

]

1.0

[

celsius metre−1

kelvin metre−1

]

zold

[

kelvin metre
−1

]

= 100.0
[

celsius per centimetre

kelvin metre−1

]

zold

[

kelvin metre
−1

]

(33)

The definition of fahrenheit per inch can be handled in the same way. The first step in the
expansion is given by Equation (34).

xnew [fahrenheit per inch] = 1.0

[

fahrenheit per inch

fahrenheit inch−1

]

xold

[

fahrenheit inch−1
]

(34)

The expansion of xold requires the removal of the offset from the expansion of fahrenheit from
Equation (27) and the inversion of the expansion of inch from Equation (23). These are given in Equa-
tion (35) and Equation (36), respectively.

vnew [fahrenheit] = 1.8

[

fahrenheit
kelvin

]

vold [kelvin] (35)

ynew

[

inch−1
]

= 39.370

[

inch−1

metre−1

]

yold

[

metre−1
]

(36)

Multiplying Equation (35) and Equation (36) and simplifying yields Equation (37).

znew

[

fahrenheit inch−1
]

= 70.866

[

fahrenheit inch−1

kelvin metre−1

]

zold

[

kelvin metre−1
]

(37)

znew from Equation (37) can be substituted into Equation (34) in place of xold and the result simplified
to give the complete expansion of fahrenheit per inch in Equation (38).

xnew [fahrenheit per inch] = 1.0

[

fahrenheit per inch

fahrenheit inch−1

]

xold

[

fahrenheit inch−1
]

= 1.0

[

fahrenheit per inch

fahrenheit inch−1

]

70.866

[

fahrenheit inch−1

kelvin metre−1

]

zold

[

kelvin metre−1
]

= 70.866

[

fahrenheit per inch

kelvin metre−1

]

zold

[

kelvin metre−1
]

(38)

The first step in the expansion of pH per celsius is given in Equation (39).

xnew [pH per celsius] = 1.0

[

pH per celsius

pH celsius−1

]

xold

[

pH celsius−1
]

(39)

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 103

When user-defined base units are referenced in a simple or complex units definition, they are treated in
the same way as SI base units, and not expanded. The final expansion into a combination of user-defined
and SI base units is given in Equation (40).

xnew [pH per celsius] = 1.0

[

pH per celsius

pH kelvin−1

]

xold

[

pH kelvin−1
]

(40)

C.4.3 Conversion between units definitions

In this section, the algorithm defined in Appendix C.3.5 for converting a variable’s value from one set of
units to another is presented with respect to a practical example. Figure 19 contains part of a CellML model
definition, consisting of two components and one connection. The legacy imperial component defines
a variable x with units of fahrenheit per inch. The modern si component defines a variable y
with units of celsius per centimetre. A connection between the two components maps x to y.

<component name="legacy_imperial">
<variable name="x" public_interface="out" units="fahrenheit_per_inch" />

</component>

<component name="modern_si">
<variable name="y" public_interface="in" units="celsius_per_centimetre" />

</component>

<connection>
<map_components component_1="legacy_imperial" component_2="modern_si" />
<map_variables variable_1="x" variable_2="y" />

</connection>

FIGURE 19: In this model fragment, a connection maps a variable x with units of fahrenheit per inch
to a variable y with units of celsius per centimetre.

The CellML definitions of both fahrenheit per inch and celsius per centimetre are
given in Figure 18. It was shown how to obtain expressions that relate each of these units definitions to
the SI base units in Appendix C.4.2. These expressions are reproduced in Equation (41) and Equation (42),
respectively.

xfpi [fahrenheit per inch] = 70.866

[

fahrenheit per inch

kelvin metre−1

]

wkpm

[

kelvin metre−1
]

(41)

ycpcm [celsius per centimetre] = 100.0

[

celsius per centimetre

kelvin metre−1

]

zkpm

[

kelvin metre−1
]

(42)

The value of x is transferred to the variable y in the mapping. Therefore an equation expressing
celsius per centimetre in terms of fahrenheit per inch is needed. This can be obtained by
rearranging Equation (41) for wkpm, substituting the resulting expression in place of zkpm in Equation (42),
and simplifying the result according to the rules defined in Appendix C.3.1. This gives the expression in
Equation (43).

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 104

ycpcm [celsius per centimetre] = 100.0

[

celsius per centimetre

kelvin metre−1

]

zkpm

[

kelvin metre−1
]

=

100.0

[

celsius per centimetre

kelvin metre−1

]

70.866

[

fahrenheit per inch

kelvin metre−1

] xfpi [fahrenheit per inch]

= 1.411

[

celsius per centimetre
fahrenheit per inch

]

xfpi [fahrenheit per inch]

(43)

C.4.4 Equation dimension checking

In this section, the algorithm defined in Appendix C.3.6 for checking that an equation has consistent units
is presented with respect to a practical example. Figure 20 contains the definition of a CellML com-
ponent sodium channel m gate. This component defines three sets of units (per millisecond,
millivolt, and per millivolt), two variables (V and alpha m) and an equation that calculates the
value of alpha m.

Equation (44) gives the equation in Figure 20, where units have been omitted. Equation (45) gives the
same equation, with the units associated with each number and variable are included. The first 1.0 in the
equation is included specifically for units consistency. It would be possible to associate more complex units
with the 0.1 in the numerator of the equation, but this would not accurately reflect the intent of the original
model authors. CellML processing software is free to find this and similar terms that do not affect the
mathematics and ignore them when interpreting the equation.

alpha m = 1.0

(

0.1 (V + 25.0)

exp (0.1 (V + 25.0)) − 1.0

)

(44)

alpha m [per millisecond] = 1.0 [per millisecond] ·
(

0.1 [per millivolt] (V [millivolt] + 25.0 [millivolt])

exp (0.1 [per millivolt] (V [millivolt] + 25.0 [millivolt])) − 1.0 [dimensionless]

)

(45)

The first step in the algorithm proposed in Appendix C.3.6 for verifying that a given equation has
consistent dimensions is to convert the equation into a tree of equation parts. Equation (45) can be broken
up into the tree shown in Figure 21.

At each branch in the tree, a single operator is applied to the child nodes, combining them into a larger
parent equation part. Each equation part in the tree has units associated with it. In the case of leaf nodes,
these units are obtained from the MathML equation definition. Parent nodes have units defined by the
operator and the units on their child nodes, as described in Appendix C.3.3. Dimension checking begins
at the leaf nodes, which are recursively removed as the units are evaluated for their parent nodes, which in
turn become leaf nodes, as described in Appendix C.3.6.

In the equation tree diagram in Figure 21, the application of each operator to a set of child nodes is
denoted by a number in square brackets, where the number reflects the order in which the operations are
processed. These operations are discussed below.

1. The <plus> operator combines the variable “V ” and the number “25.0” that occur in the de-
nominator of the fraction in Equation (45). The <plus> operator requires all of its operands to be
dimensionally equivalent, as described in Appendix C.2.2. The resulting equation part will have the
same units as the operands. Both “V ” and “25.0” have units of millivolt, and so the parent
equation part “V + 25.0” also has units of millivolt.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 105

<component name="sodium_channel_m_gate">
<units name="per_millisecond">

<unit prefix="milli" units="second" exponent="-1" />
</units>
<units name="millivolt">

<unit prefix="milli" units="volt" />
</units>
<units name="per_millivolt">

<unit prefix="milli" units="volt" exponent="-1" />
</units>

<variable name="V" units="millivolt" />
<variable name="alpha_m" units="per_millisecond" />

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><eq />
<ci> alpha m </ci>
<apply><times />

<cn cellml:units="per_millisecond"> 1.0 </cn>
<apply><divide />
<apply><times />

<cn cellml:units="per_millivolt"> 0.1 </cn>
<apply><plus />

<ci> V </ci>
<cn cellml:units="millivolt"> 25.0 </cn>

</apply>
</apply>
<apply><minus />

<apply><exp />
<apply><times />
<cn cellml:units="per_millivolt"> 0.1 </cn>
<apply><plus />

<ci> V </ci>
<cn cellml:units="millivolt"> 25.0 </cn>

</apply>
</apply>

</apply>
<cn cellml:units="dimensionless"> 1.0 </cn>

</apply>
</apply>

</apply>
</apply>

</math>
</component>

FIGURE 20: Parts of the CellML definition of the Hodgkin Huxley squid axon model. The
sodium channel m gate component defines three sets of units, two variables V and alpha m, and the

calculation of alpha m.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 106

V + 25.00.1()exp()
V + 25.00.1()()1.0

V + 25.00.1()exp()
V + 25.00.1()

V + 25.00.1()exp()− 1.0

V + 25.00.1()exp()
V + 25.00.1()()= 1.0alpha_m

V + 25.00.1()exp()

V + 25.00.1()

V + 25.00.1

V 25.0

V + 25.00.1()

V + 25.00.1

V 25.0

1.0

alpha_m

1.0

[9]

[8]

[7]

[4]

[3]

[1]

[5]

[6]

[2]

FIGURE 21: The tree form of Equation (45), in which each non-leaf node is obtained by the application of
a single operator to its children. Each operator is represented by a number in square brackets. The effect of

each operator is discussed in the text.

2. The <times> operator (which is not explicitly rendered in Equation (45)) multiplies the “V + 25.0”
term that is the result of the first operation by the number “0.1” which has units of per millivolt.
The <times> operator can be applied to any operands, independent of their units, and the resulting
equation part has units that are the product of the units on the operands. In this case, the resul-
tant “0.1(V + 25.0)” term has units that are the product of millivolt and per millivolt,
which simplifies to dimensionless (as described in Appendix C.3.1).

3. The <exp> operator is a unary arithmetic operator and its operand must have units of dimensionless.
The result of applying the operator, in this case “exp(0.1(V + 25.0))”, also has units of dimensionless.

4. The <minus> operator subtracts the number “1.0”, which has units of dimensionless, from
the term resulting from operation 3. The <minus> operator requires both its operands to have the
same units and the result assumes those units.

5. The <plus> operator is applied to the variable “V ” and the number “25.0” from the numerator of
the fraction in Equation (45). Units are handled as in operation 1.

6. Exactly as in operation 2, where the operands are now in the numerator of the fraction in Equa-
tion (45).

7. The <divide> operator is applied to the results of operations 6 and 4, which both have units of
dimensionless. The <divide> operator can be applied to any operands, independent of their
units, and the result has the quotient of the units on the operands. In this case, the resulting fraction
has units of dimensionless.

8. The <times> operator is applied to the number “1.0”, which has units of per millisecond
and the result of operation 7, which has units of dimensionless. The resulting term has units of
per millisecond.

9. Finally, the <equals> operator is applied to the variable “alpha m” and the term resulting from
operation 8. The <equals> operator requires that its operands have dimensionally equivalent units.

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 107

D Changes

D.1 Changes between the 10 August 2001 Recommendation and the 6 November
2002 Draft

Editorial Changes

• Specification Wide47

– The Bioengineering Research Group at the University of Auckland is now the Bioengineering
Institute.

– Several minor editorial changes have been made to all sections of the specification.

• Section 3.2.2: Definition of components48

– Further clarified the following sentence to indicate that the name attribute need only be unique
amongst all <component> elements in the current model: “Each <component> must have
a name attribute, the value of which is a unique identifier for the component within the current
model.”

• Section 3.3: Examples49

– Corrected the MathML equation in Figure 4.

• Section 3.4.6: The <map variables> element50

– A variable with a private interface attribute of "in"must be mapped to a single variable
owned by a component in the encapsulated set, provided the target variable has a public interface
attribute value of "out".

• Section 4.3: Examples51

– Figure 6 has three units definitions, not two.

• Section 5.2.7: Equation dimension checking52

– Spelling error: interoperability.

• Section 7.5.1: Implications of the reversible attribute53

– Added the clarifying sentence, “No assumptions must be made of the species acting in other
roles.”

• Section 8: Metadata Framework54

47http://www.cellml.org/public/specification/20021106/cellml specification.html
48http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure component element
49http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure examples
50http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure spec rules map variables element
51http://www.cellml.org/public/specification/20021106/cellml specification.html#sec math examples
52http://www.cellml.org/public/specification/20021106/cellml specification.html#sec units equation dimension checking
53http://www.cellml.org/public/specification/20021106/cellml specification.html#sec rxn reversible attribute
54http://www.cellml.org/public/specification/20021106/cellml specification.html#sec metadata

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 108

– The W3C RDF Core Working Group published a new document in December of 2001 updating
RDF syntax (RDF/XML Syntax Specification (Revised)55). The new working draft recommends
that all attributes belonging to the RDF namespace be clarified with the prefix associated with
the RDF namespace (with the rdf prefix in this document). Thus, all about attributes have
been given the rdf prefix.

– Corrected minor grammatical errors in Sections 8.4.1 and 8.4.2.

Changes to the Language

• Specification Wide56

– CellML Namespace updated to include changes. All CellML elements have been redefined
under the CellML 1.1 Namespace.

• Section 1.2: Structure of the CellML Specification57

– Added Section 9 abstract.

• Section 2.2.1: Definition of a valid CellML identifier58

– Added restriction that an identifier must not begin with a digit.

• Section 2.2.2: Namespaces in CellML59

– Added XLink namespace for use with model import.

• Section 2.4.1: Valid CellML identifiers60

– Added restriction that an identifier must not begin with a digit.

• Section 3.2.1: Definition of a model61

– Changed text to correspond with new import features and recent ideas of component re-use.

– Added <import model> element.

• Section 3.2.2: Definition of components62

– Changed text to correspond with new import features and recent ideas of component re-use.

• Section 3.2.3: Definition of variables63

– Added description of the units model attribute.

55http://www.w3.org/TR/rdf-syntax-grammar/
56http://www.cellml.org/public/specification/20021106/cellml specification.html
57http://www.cellml.org/public/specification/20021106/cellml specification.html#sec intro spec structure
58http://www.cellml.org/public/specification/20021106/cellml specification.html#sec fundamentals identifiers
59http://www.cellml.org/public/specification/20021106/cellml specification.html#sec fundamentals namespaces
60http://www.cellml.org/public/specification/20021106/cellml specification.html#sec fundamentals rules identifiers
61http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure model element
62http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure component element
63http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure variable element

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 109

• Section 3.2.4: Definition of connections64

– Added description of the model 1 and model 2 attributes.

• Section 3.4.1: The <model> element65

– Added <import model> element.

• Section 3.4.3: The <variable> element66

– Added the units model attribute.
– Expanded the allowed values of the initial value attribute to include the value of a name

attribute of a <variable> element declared in the current component.

• Section 3.4.5: The <map components> element67

– Added the model 1 and model 2 attributes.
– Expanded the proper use of the component 1 and component 2 attributes to include the
model 1 and model 2 attributes.

• Section 5.2.2: User defined units68

– Added the units model attribute.

• Section 5.4.2: The <unit> element69

– Added the units model attribute.

• Section 9: Importing Models70

– Newly added to specify the import feature.

• Appendix A.6: The CellML DTD71

– Incorporates the changes listed above.
– Made the relationship attribute on the <relationship ref> element optional be-

cause the relationship attribute can be placed under a user-defined namespace and still be valid
CellML.

D.2 Changes between 18 May 2001 Final Draft and the 10 August 2001 Recom-
mendation

The full list of changes made between the 18 May 2001 Final Draft and the 10 August 2001 Recommenda-
tion of the CellML 1.0 specification can be found at Appendix D of the 10 August 2001 Recommendation72.

64http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure connection element
65http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure spec rules model element
66http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure spec rules variable element
67http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure spec rules map components element
68http://www.cellml.org/public/specification/20021106/cellml specification.html#sec units user defined units
69http://www.cellml.org/public/specification/20021106/cellml specification.html#sec units spec rules unit element
70http://www.cellml.org/public/specification/20021106/cellml specification.html#sec import model
71http://www.cellml.org/public/specification/20021106/cellml specification.html#sec cellml 1 1 dtd
72http://www.cellml.org/public/specification/20010810/cellml specification.html#changes

http://www.cellml.org/public/specification/20021106/cellml specification.pdf 110

D.3 Changes between 2 March 2001 Draft and the 18 May 2001 Final Draft

The complete list of changes made between the 2 March 2001 Draft and the 18 May 2001 Final Draft of the
CellML 1.0 specification can be found at Appendix D of the 18 May 2001 Final Draft73.

73http://www.cellml.org/public/specification/20010518/cellml specification.html#sec changes

