
http://www.cellml.org/public/specification/20021106/appendices.pdf 1

CellML Specification 1.1

Draft — 6 November 2002

A Using The CellML 1.0 DTD

A.1 Introduction

This section contains some recommendations on the use and referencing of the CellML 1.1 DTD, the full
text of which is given in Appendix A.6. The document rules and processor behaviour described in this
section are not required in valid CellML documents and from CellML conformant processing software,
respectively.

A.2 The CellML DOCTYPE declaration

CellML documents may reference the version of the CellML 1.1 DTD maintained on the CellML website
with a DOCTYPE declarations of the following form:

<!DOCTYPE model SYSTEM "http://www.cellml.org/cellml/cellml_1_1.dtd">

“model” may be changed to match the root element of the CellML document.
CellML document authors may change the value of the system identifier to point to a copy of the

DTD cached on a local filesystem if this is available. This specification does not define a public identifier
for CellML 1.0. For interoperability, CellML document authors should not define one unless specifically
needed for a parser that makes use of SGML catalog files.

A.3 CellML without a DTD

CellML documents are not required to contain a DOCTYPE declaration. In the absence of a DTD, CellML
processing software needs to take into account the following important points:

• All cmeta:id attributes are of type ID.

• All id attributes on MathML elements are of type ID.

The CellML DTD does not define the default values for CellML attributes that are defined in the speci-
fication. With or without a DTD, CellML processing software is responsible for setting these values, if not
specified.

A.4 Use of MathML within CellML

The CellML 1.1 DTD can be used in conjunction with the MathML 2.0 DTD1 to validate any MathML
content within a CellML document. The CellML DTD contains a reference to the MathML 2.0 DTD,
which is maintained at the World Wide Web Consortium’s website2, inside a conditional section, which by
default is not included in the CellML DTD. CellML document authors may cause the conditional section
to be included by setting the value of the “use mathml dtd” entity to “INCLUDE” inside the internal
subset of their CellML document, as shown below:

1http://www.w3.org/TR/MathML2/dtd/mathml2.dtd
2http://www.w3.org/

http://www.cellml.org/public/specification/20021106/appendices.pdf 2

<!DOCTYPE model SYSTEM "http://www.cellml.org/cellml/cellml_1_1.dtd" [
<!ENTITY % use_mathml_dtd "INCLUDE">

]>

If copies of both the CellML 1.1 DTD and the MathML 2.0 DTD are available on the local filesystem,
it is possible to conveniently override the reference to the MathML 2.0 DTD by setting the value of the
“mathml dtd path” entity to the appropriate relative path from the CellML DTD to the MathML DTD,
as shown below:

<!DOCTYPE model SYSTEM "/my/local/copy/of/the/cellml_1_1.dtd" [
<!ENTITY % mathml_dtd_path "’relative/path/to/mathml2.dtd’">
<!ENTITY % use_mathml_dtd "INCLUDE">

]>

The MathML 2.0 DTD is not on the CellML website, so DOCTYPE declarations of this form will fail
when referencing the DTD on the CellML website. The MathML 2.0 DTDs are available as a ZIP archive,
a link to which is given in Appendix A.6 of the MathML 2.0 Recommendation3.

The CellML specification requires a cellml:units attribute to be defined on all <mathml:cn>
elements (where the cellml and mathml prefixes are mapped to the URIs for the CellML and MathML
namespaces, respectively). For this reason, the conditional section of the CellML DTD in which the
MathML DTD is referenced also redeclares the list of attributes on the <mathml:cn> element to in-
clude the cellml:units attribute. This will prevent XML parsers from finding errors when validating
valid CellML documents against the MathML DTD.

A.5 Treatment of namespaces

In Section 2.2.24, it was suggested that the root element of a CellML document set the default namespace
and map the cellml prefix to the CellML namespace URI. Use of unprefixed element names (i.e., default
namespaces) is encouraged to ensure DTD-based validation will work correctly. The CellML 1.1 DTD de-
fines three optional attributes on every CellML element that can be used to set namespaces where necessary.
These are xmlns, xmlns:cellml and xmlns:cmeta.

A.6 The CellML 1.1 DTD

The CellML 1.1 DTD is available at the following URI:

http://www.cellml.org/cellml/cellml 1 1.dtd

The CellML 1.1 DTD does not attempt to declare or reference declarations for the metadata framework
elements in the RDF namespace. It also doesn’t declare the default values of any of the attributes on the
CellML elements.

For convenient reference, the text of the DTD is given below.

<!--
FILE : cellml_1_1.dtd

CREATED : 26 August 2002

3http://www.w3.org/TR/2001/REC-MathML2-20010221/appendixa.html#parsing dtd
4http://www.cellml.org/public/specification/cellml specification.html#sec fundamentals namespaces

http://www.cellml.org/public/specification/20021106/appendices.pdf 3

LAST MODIFIED : 29 September 2003

AUTHOR : Autumn A. Cuellar (a.cuellar@auckland.ac.nz)
Warren Hedley
The Bioengineering Institute
The University of Auckland

DESCRIPTION : This document contains a DTD corresponding to the syntax rules
defined in the Developer’s Specification for CellML 1.1. This
specification is available at

http://www.cellml.org/private/specification/unstable/index.html

SYSTEM IDENTIFIER : http://www.cellml.org/cellml/cellml_1_1.dtd

COPYRIGHT : (2002) Bioengineering Institute, The University of Auckland.
-->

<!ENTITY % use_mathml_dtd "IGNORE">
<![%use_mathml_dtd;[

<!ENTITY % mathml-charent.module "IGNORE">
<!ENTITY % mathml_dtd_path

"’http://www.w3.org/TR/MathML2/dtd/mathml2.dtd’">
<!ENTITY % mathml_dtd PUBLIC "-//W3C//DTD MathML 2.0//EN"

%mathml_dtd_path;>

%mathml_dtd;

<!ATTLIST %cn.qname;
%MATHML.Common.attrib;
%att-type;
%att-base;
%att-definition;
%att-encoding;
cellml:units CDATA #REQUIRED

>
]]>

<!ENTITY % cellml_common_attributes "
xmlns CDATA #IMPLIED
xmlns:cellml CDATA #IMPLIED
xmlns:cmeta CDATA #IMPLIED
cmeta:id ID #IMPLIED

">

<!ELEMENT model (import | units | component | group | connection)*>
<!ATTLIST model

%cellml_common_attributes;
name CDATA #REQUIRED

>

<!ELEMENT import (units | component)*>
<!ATTLIST import

%cellml_common_attributes;
xlink:type (simple) #FIXED "simple"
xlink:href CDATA #REQUIRED

>

<!ELEMENT component (units | variable | reaction | math)*>
<!ATTLIST component

http://www.cellml.org/public/specification/20021106/appendices.pdf 4

%cellml_common_attributes;
name CDATA #REQUIRED
component_ref CDATA #IMPLIED

>

<!ELEMENT variable EMPTY>
<!ATTLIST variable

%cellml_common_attributes;
name CDATA #REQUIRED
public_interface (in|out|none) #IMPLIED
private_interface (in|out|none) #IMPLIED
units CDATA #REQUIRED
initial_value CDATA #IMPLIED

>

<!ELEMENT connection (map_components | map_variables+)>
<!ATTLIST connection

%cellml_common_attributes;
>

<!ELEMENT map_components EMPTY>
<!ATTLIST map_components

%cellml_common_attributes;
component_1 CDATA #REQUIRED
component_2 CDATA #REQUIRED

>

<!ELEMENT map_variables EMPTY>
<!ATTLIST map_variables

%cellml_common_attributes;
variable_1 CDATA #REQUIRED
variable_2 CDATA #REQUIRED

>

<!ELEMENT units (unit*)>
<!ATTLIST units

%cellml_common_attributes;
name CDATA #REQUIRED
units_ref CDATA #IMPLIED
base_units (yes|no) #IMPLIED

>

<!ELEMENT unit EMPTY>
<!ATTLIST unit

%cellml_common_attributes;
multiplier CDATA #IMPLIED
prefix CDATA #IMPLIED
units CDATA #REQUIRED
exponent CDATA #IMPLIED
offset CDATA #IMPLIED

>

<!ELEMENT group (relationship_ref | component_ref)+>
<!ATTLIST group

%cellml_common_attributes;
>

<!ELEMENT relationship_ref EMPTY>
<!ATTLIST relationship_ref

http://www.cellml.org/public/specification/20021106/appendices.pdf 5

%cellml_common_attributes;
relationship (encapsulation|containment) #IMPLIED

>

<!ELEMENT component_ref (component_ref*)>
<!ATTLIST component_ref

%cellml_common_attributes;
component CDATA #REQUIRED

>

<!ELEMENT reaction (variable_ref+)>
<!ATTLIST reaction

%cellml_common_attributes;
reversible (yes|no) #IMPLIED

>

<!ELEMENT variable_ref (role+)>
<!ATTLIST variable_ref

%cellml_common_attributes;
variable CDATA #REQUIRED

>

<!ELEMENT role (math?)>
<!ATTLIST role

%cellml_common_attributes;
role (reactant|product|activator|catalyst|inhibitor|modifier|rate) #REQUIRED
direction (forward|backward|both) #IMPLIED
delta_variable CDATA #IMPLIED
stoichiometry CDATA #IMPLIED

>

http://www.cellml.org/public/specification/20021106/appendices.pdf 6

B Scripting functionality in CellML

B.1 Introduction

MathML can be extended by defining new operators, the behaviour of which is not defined in MathML.
These operators could be used to call functions implemented in software (i.e., implicitly) or defined using
a scripting language (i.e., explicitly). CellML 1.1 does not require processing software to implement sup-
port for scripting functionality. This section contains some recommendations on best practices for adding
scripting functionality to CellML.

For the purposes of this discussion, it is assumed that scripting functionality will be implemented via
function calls. Software that extends the functionality of MathML in other ways should extrapolate these
recommendations as appropriate.

B.2 Availability of scripts

Functions referenced in a CellML document that are defined using non-MathML syntax should be identified
by, and accessible via, a URI. A function could, for instance, be accessible via HTTP from a database using
a CGI script that takes an SQL expression as an argument.

B.3 Embedding scripts in CellML

Functions should be defined within elements in an application-specific extension namespace, if the func-
tions are embedded within CellML documents. If the embedded script is only referenced by a single
component, the script should be defined within the corresponding <cellml:component> element. If
the embedded script is referenced by more than one component, the script should be defined within the
<cellml:model> element.

B.4 Preferred scripting language

Implementors considering adding scripting functionality to CellML processing software are encouraged to
use ECMAScript. It is anticipated that, if scripting functionality is officially endorsed by a future version
of CellML, ECMAScript will be the scripting language that processing software is required to implement.
ECMAScript is the recommended language because it is simple, standardised, and open source interpreting
libraries are freely available.

ECMA5 is an international industry association that develops standards in information and communica-
tion for the European union. ECMA took the scripting language that Netscape6 developed for adding inter-
active content to its web browser and developed the formal language specification ECMA-262 (ECMAScript
Language Specification)7.

B.5 Referencing scripts from MathML

The MathML 2.0 Recommendation8 defines a <mathml:csymbol> element for referencing mathemat-
ical symbols and constructs that are not defined by MathML. This element should be used for referencing
functions defined using non-MathML syntax from within blocks of MathML. Processing software should
take into account the following recommendations regarding the use of the <mathml:csymbol> element
for this purpose.

5http://www.ecma.ch/
6http://www.netscape.com/
7http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
8http://www.w3.org/TR/2001/REC-MathML2-20010221

http://www.cellml.org/public/specification/20021106/appendices.pdf 7

B.5.1 The <mathml:csymbol> element

1. Recommended use of the <mathml:csymbol> element

• The <mathml:csymbol> element should only appear as the first child element within a
<mathml:apply> element.

[A <mathml:csymbol> element should only be used as an operator, which is “applied” to
some arguments.]

• After leading and trailing whitespace is removed, the content of a <mathml:csymbol> el-
ement must be a valid CellML identifier as discussed in Section 2.2.19. This identifier must
accurately represent the external function referenced.

[The content of a <mathml:csymbol> element should preferably be a human-readable iden-
tifier for the external function. If the function is defined using a common scripting or program-
ming language, then this identifier should be the name of the function.]

• Each <mathml:csymbol> element should define a definitionURL and an encoding
attribute.

2. Recommended use of the mathml:definitionURL attribute

• The value of the definitionURL attribute should be a valid URI that identifies a single
resource containing the definition of the external function.

3. Recommended use of the mathml:encoding attribute

• The value of the encoding attribute should indicate to processing software the format of the
externally defined function.

[In the version of CellML that describes how external functions are to be defined within the
CellML framework, the encoding attribute will be moved into the CellML namespace and
will be required to take a value from a controlled vocabulary.]

B.6 Effects of scripts

Functions must be side-effect free. That is, a function must not assign values to variables that are not local
to that function. In particular, functions must not alter the values of their arguments or global variables.

9http://www.cellml.org/public/specification/cellml specification.html#sec fundamentals identifiers

http://www.cellml.org/public/specification/20021106/appendices.pdf 8

C Advanced Units Functionality

C.1 Introduction

CellML 1.1 lays the foundations of a flexible and robust system for the association of units with variables
and constants in cellular models. However, it does not require software to make use of the units information
contained in CellML documents. This section presents algorithms and examples demonstrating some of the
advanced features related to units that CellML processing software might choose to offer modellers. For
interoperability, CellML processing software that includes these features should achieve the same results as
the algorithms described here, although the exact implementation may differ.

C.2 Terminology

C.2.1 Equivalence of units references

Two units references are considered equivalent if they satisfy one of the following criteria:

• They reference the same units definition from the standard dictionary.

• They reference the same units definition in the current <component> element.

• They reference the same units definition in the current <model> element, where that units definition
is not superseded by a units definition with the same name in the current <component> element.

C.2.2 Dimensional equivalence of units definitions

Two units definitions have dimensional equivalence if, when each is recursively expanded and simplified
until left with nothing but products of SI and user-defined base units:

• the expanded form of each units definition consists of the same set of base units, and

• the exponent on each base unit is identical in each expanded units definition.

Algorithms for the expansion and simplification of units definitions are given in Appendix C.3.4 and
Appendix C.3.1, respectively.

C.3 Algorithms

C.3.1 Simplification of units definitions

It is frequently convenient to be able to simplify a units definition, where this units definition is the result
of the application of some mathematical operator to terms which have units associated with them. These
operators include the <times>, <divide> and <diff> operators.

The simplification of a units definition is an iterative process in which the number of other units defini-
tions referenced is systematically reduced. References to units definitions may be removed in the following
cases:

• If two units references are equivalent (as defined in Appendix C.2.1) and have exponents with equal
and opposite value, then they may be replaced by a reference to dimensionless.

• If two units references are equivalent (as defined in Appendix C.2.1) then they may be replaced with
a single units reference to the same units, where the exponent associated with that units reference is
the sum of the exponents on the original two units references.

http://www.cellml.org/public/specification/20021106/appendices.pdf 9

• If a units definition references dimensionless one or more times in addition to some other units,
any references to dimensionless may be removed.

• If a units definition references dimensionless one or more times and references no other units,
the definition may be replaced with dimensionless.

The above rules only allow the removal of units references that are equivalent as defined in Appendix C.2.1.
This scheme would not allow references to identical units definitions in two different components to be can-
celled and removed, because the references would not satisfy the equivalence criteria.

C.3.2 Units-based restrictions on the use of MathML operators

This section describes restrictions on the units associated with a collection of terms to which each MathML
operator in the CellML set (defined in Section 4.2.310) can be applied. For instance, the <mathml:plus>
operator can only be applied to terms that have dimensionally equivalent units. The restrictions invalidate
the application of certain MathML operators to certain collections of terms based on their units, and are
used in equation dimension checking, as described in Appendix C.3.6.

The restrictions are given in Table 5. The <mathml:root>,<mathml:diff> and <mathml:log>
elements all take qualifiers, in addition to operands.

C.3.3 Applying operators to units definitions

The section defines the units resulting from the application of MathML operators to a collection of terms,
each with known units. This is needed for units definition conversion and equation dimension checking,
as described in Appendix C.3.5 and Appendix C.3.6, respectively. The units on each of the terms in the
collection must satisfy the restrictions defined in Appendix C.3.2 for the current operator.

The full set of units calculation rules are described in Table 6.

C.3.4 Expansion of units definitions

This section presents the recommended algorithm for expanding a given units definition into an expression
that relates the defined units to only SI and user-defined base units. This algorithm may be used in the
conversion of units definitions and equation dimension checking, algorithms for which are defined in Ap-
pendix C.3.5 and Appendix C.3.6, respectively. Examples of the expansion of units definitions are given in
Appendix C.4.2.

The specific steps in the algorithm depend on whether the units definition to be expanded is simple or
complex, as defined in Section 5.2.212. Both derivations use recursive methods. At each step, any units that
are not base units are replaced with expansions based on the appropriate definition.

Expansion of simple units definitions

The formula relating a variable xU with units of U (where U are simple units), to a variable x1 with units of
u1 (the subunits referenced by the units attribute on the <unit> element inside the units definition for
U), is given in Equation (9). This is based on the simple units definition formula given in Equation (??).

xU [U] = (m1 p1)

[

U
u1

]

x1 [u1] + o1 [U] (9)

m1, p1 and o1 correspond to the multiplier, prefix and offset attributes on the <unit> ele-
ment, respectively.

10http://www.cellml.org/public/specification/cellml specification.html#sec math cellml subset
12http://www.cellml.org/public/specification/cellml specification.html#sec units user defined units

http://www.cellml.org/public/specification/20021106/appendices.pdf 10

Operator Restrictions
<times>, <divide>, <abs>,
<floor>, <ceiling>

There are no restrictions on the units of
operands for these operators.

<eq>, <neq>, <gt>, <lt>, <geq>,
<leq>, <plus>, <minus>

These operators, if applied to more than
one operand, require all of their operands
to have either equivalent units references,
as defined in Appendix C.2.1, or to refer-
ence units that have dimensional equiva-
lence, as defined in Appendix C.2.2.

<and>, <or>, <xor>, <not> These operators require their operands to
have units of cellml:boolean, as de-
fined in Section 5.5.211.

<exp>, <ln>, <factorial>,
<sin>, <cos>, <tan>, <sec>,
<csc>, <cot>, <sinh>, <cosh>,
<tanh>, <sech>, <csch>,
<coth>, <arcsin>, <arccos>,
<arctan>, <arccosh>, <arccot>,
<arccoth>, <arccsc>, <arccsch>,
<arcsec>, <arcsech>, <arcsinh>,
<arctanh>

These operators require their operands to
have units of dimensionless.

<power> This is a binary arithmetic operator. Its
first operand may have any units, and
its second operand must have units of
dimensionless.

<root> This is a qualified unary operator. Its
operand may have any units. The
value of the <degree> qualifier ele-
ment, if present, must have units of
dimensionless.

<log> This is a qualified unary opera-
tor. Its operand must have units of
dimensionless. The value of the
<logbase> qualifier element, if present,
must have units of dimensionless.

<diff> The operand of this operator and the
value of the <bvar> qualifier element, if
present, may have any units. The value
of a <degree> qualifier element within
the <bvar> qualifier element, if present,
must have units of dimensionless.

TABLE 5: The restrictions on the units associated with operands and qualifiers for each MathML operator.
All elements in this table are in the MathML namespace.

http://www.cellml.org/public/specification/20021106/appendices.pdf 11

Operator Result Units
<eq>, <neq>, <gt>, <lt>, <geq>,
<leq>, <and>, <or>, <xor>, <not>

The result of these operators has units of
cellml:boolean.

<exp>, <ln>, <log>, <factorial>,
<sin>, <cos>, <tan>, <sec>,
<csc>, <cot>, <sinh>, <cosh>,
<tanh>, <sech>, <csch>,
<coth>, <arcsin>, <arccos>,
<arctan>, <arccosh>, <arccot>,
<arccoth>, <arccsc>, <arccsch>,
<arcsec>, <arcsech>, <arcsinh>,
<arctanh>

The result of these operators has units of
dimensionless.

<plus>, <minus>, <abs>, <floor>,
<ceiling>

The result of these operators has the same
units as the operands.

<times> The result of this operator has units
that are the product of the units on the
operands. This product may be simpli-
fied according to the rules outlined in Ap-
pendix C.3.1.

<divide> The result of this operator has units that
are the quotient of the units on the first
and second operands. This quotient may
be simplified according to the rules out-
lined in Appendix C.3.1.

<power> The result of this operator has units
that are the units on the first operand
raised to the power of the second
operand. If the first operand has units
of dimensionless, the result also has
units of dimensionless.

<root> The result of this operator has units that
are the units on the first operand raised to
one over the value of the <degree> qual-
ifier element (the default value of which
is 2.0). If the first operand has units
of dimensionless, the result also has
units of dimensionless.

<diff> The result of this operator has units that
are the quotient of the units of the operand
over the units of the term in the <bvar>
qualifier element raised to the value of
the <degree> qualifier element inside
the <bvar> qualifier element (the default
value of which is 1.0). This quotient may
be simplified according to the rules out-
lined in Appendix C.3.1.

TABLE 6: The units of the result after applying each MathML operator to a collection of terms, where the
units on those terms satisfy the restrictions in Appendix C.3.2. All elements in this table are in the MathML

namespace.

http://www.cellml.org/public/specification/20021106/appendices.pdf 12

The formula relating a variable with units of u1 to its subunits u2, as referenced in the units definition
for u1, is given in Equation (10).

x1 [u1] = (m2 p2)

[

u1

u2

]

x2 [u2] + o2 [u1] (10)

Equation (10) can be substituted into Equation (9) to give Equation (11).

xU [U] = (m1 p1)

[

U
u1

](

(m2 p2)

[

u1

u2

]

x2 [u2] + o2 [u1]

)

+ o1 [U] (11)

The expression defining each new set of units in terms of its subunits can be substituted into the current
expression recursively until an expression is reached that relates xU to xn with units un, which are SI
or user-defined base units. At this point expansion stops, and the resulting expression can be simplified.
This simplification combines multiplier, prefix and offset terms and combines their units based on the rules
defined in Appendix C.3.3. The result is an expression of the form given in Equation (12).

xU [U] = mt

[

U
un

]

xn [un] + ot [U] (12)

The values of mt and ot are given by Equation (13) and Equation (14), respectively.

mt = (m1 p1) . . . (mn pn) (13)

ot = m1 p1 (o2 + m2 p2 (o3 + . . . + mn−1 pn−1 on)) (14)

Expansion of complex units definitions

The formula relating a variable xU with complex units U to a variable xA with units that are the product of
the subunits referenced in the units definition for U is given in Equation (15). This is based on the complex
units definition formula given in Equation (??).

xU [U] = (mA1 . . . mAn pA1
eA1 . . . pAn

eAn)

[

U
uA1

eA1 . . . uAn
eAn

]

xA [uA1
eA1 . . . uAn

eAn] (15)

The mAi, pAi, uAi and eAi refer to the values of the multiplier, prefix, units and exponent
attributes on the i-th <unit> element inside the units definition for U, respectively. If, at the first step, the
c-th set of units referenced is not SI or user-defined base units, the formula relating uAc to the c-th set of
units referenced to its subunits is given in Equation (16).

xC [uAc] = (mB1 . . . mBn pB1
eB1 . . . pBn

eBn)

[

U
uB1

eB1 . . . uBn
eBn

]

xB [uB1
eB1 . . . uBn

eBn] (16)

Note that if uAc is a simple units definition, then the right hand side of Equation (16) will take the form
of a simple units definition, but without the constant offset term.

An expansion for xA that incorporates the expansion for uAc is obtained by multiplying both sides of
Equation (16) by unitary coefficients with units of the product of all of the units referenced on the right
hand side of Equation (15) with the exception of uAc. Expansion of units definitions involves constructing
expansions for the variable on the right hand side. The expansion continues recursively as long as any of the
units on the right hand side of Equation (15) are not SI or user-defined base units. The resulting expansion

http://www.cellml.org/public/specification/20021106/appendices.pdf 13

can be simplified by combining multiplier and prefix terms to give an expression with the form given in
Equation (17).

xU [U] = mt

[

U
uA1

eA1 . . . uZn
eZn

]

xZ [uA1
eA1 . . . uZn

eZn] (17)

uIi corresponds to the units referenced by the i-th units definition referenced in the I-th definition to be
expanded, and mt is given by Equation (18).

mt = mA1 . . . mZn pA1
eA1 . . . pZn

eZn (18)

mIi, pIi and eIi correspond to the values of the multiplier, prefix and exponent attributes on
the i-th <unit> element in the I-th definition to be expanded.

C.3.5 Conversion between units definitions

This section presents an algorithm that specifies a possible method for converting a variable’s value from
one set of units to another. An example demonstrating the use of this algorithm is given in Appendix C.4.3.

If the two variable declarations that are to be mapped both reference equivalent units definitions as
defined in Appendix C.2.1, then there is a one-to-one mapping between the variable’s value in both compo-
nents.

If the two variable declarations that are to be mapped reference different units definitions, then software
may choose to calculate a conversion formula as follows. Given a variable x with units Ux, the value of
which is to be passed to a variable y with units Uy, the following steps should be followed:

1. The units definitions for Ux and Uy are fully expanded and simplified according to the algorithm
presented in Appendix C.3.4. This yields expressions for x and y in terms of xn and yn, the units of
which are products of only SI and user-defined base units. The expression for x will be of the form
given in Equation (19) if Ux is a simple units definition, or of the form given in Equation (20) if Ux is
a complex units definition.

x [Ux] = mt

[

Ux

ux

]

xn [ux] + ot [Ux] (19)

x [Ux] = mt

[

Ux

ux

]

xn [ux] (20)

In Equation (19), ux corresponds to the base units referenced in the full expansion of Ux, whereas in
Equation (20), ux corresponds to the product of all of the base units in the full expansion raised to the
appropriate exponents.

2. It should be considered an error if the units for xn (ux) and yn (uy) do not have equivalent dimensions
as defined in Appendix C.2.2.

3. The expansion of x is inverted to give an expression for xn. The inverted forms of Equation (19) and
Equation (20) are given in Equation (21) and Equation (22), respectively.

xn [ux] =
1

mt

[

ux

Ux

]

(x [Ux] − ot [Ux]) (21)

xn [ux] =
1

mt

[

ux

Ux

]

x [Ux] (22)

http://www.cellml.org/public/specification/20021106/appendices.pdf 14

The appropriate expression for xn can then be substituted for yn in the expansion of y. This yields an
equation for y in terms of x, which can be used to convert variable values.

C.3.6 Equation dimension checking

This section presents an algorithm that can be used to verify that an equation is consistent with respect to the
dimensions of the units definitions referenced by all numbers and variables. An example that demonstrates
the process of equation dimension checking for an equation defined in MathML and CellML is given in
Appendix C.4.4.

This algorithm relies on the restrictions and behaviour of the different operators with respect to units de-
fined in Appendix C.3.2 and Appendix C.3.3. Future versions of the specification may extend this algorithm
to handle other operators. The steps in the algorithm are:

1. The equation is split into a tree of terms, in which each parent term is obtained by the application of a
single operator to its children. The root of the tree is the entire equation, which is created by applying
a relational operator (typically the equals operator) to its child terms. All other terms in the tree are
created by applying arithmetic operators to child terms.

2. The units definitions for the terms at the leaves of the tree (which will be variables, numbers, or
MathML constants elements) are expanded into functions of the SI and user-defined base units, using
the algorithm presented in Appendix C.3.4.

3. Starting at the leaves of the tree, sets of child terms are recursively removed from the tree and units
assigned to the parent terms. The removal of each set of terms follows the following steps:

(a) The child terms are compared against the restrictions described in Appendix C.3.2 for the current
operator. It should be considered an error if they do not satisfy these restrictions, in which case
the equation has inconsistent dimensions.

(b) Units are assigned to the parent term as defined in Appendix C.3.3 for the current operator.

4. The equation has self-consistent dimensions if no inconsistencies were found during the recursive
removal of child terms during the traversal from leaves to root.

C.4 Examples

C.4.1 User-defined units and new base units

In Figure 18, the example units definitions given in Section 5.313 are reproduced. These examples are used
in the subsequent advanced examples.

C.4.2 Expansion of user-defined units

In this section, the expansion of user-defined units according to the algorithm described in Appendix C.3.4
is demonstrated for each of the units definitions given in Figure 18.

The first <units> element in Figure 18 defines units named pH, and defines a base units attribute
with a value of "yes". This indicates that it should be treated by processing software as if it were an SI
base unit, and that it cannot be expanded.

The definition of inch in Figure 18 is a simple units definition as it references only a single unit with
an exponent of one. When the appropriate terms are substituted into Equation (??), the conversion from
metre to inch is given by Equation (23). metre is a SI base unit, so no further expansion is necessary.

13http://www.cellml.org/public/specification/cellml specification.html#sec units examples

http://www.cellml.org/public/specification/20021106/appendices.pdf 15

<!-- User-defined Base Units -->
<units name="pH" base_units="yes" />

<!-- Simple Units Definitions -->
<units name="inch">

<unit multiplier="2.54" prefix="centi" units="metre" />
</units>

<units name="fahrenheit">
<unit multiplier="1.8" units="celsius" offset="32.0" />

</units>

<!-- Complex Units Definitions -->
<units name="celsius_per_centimetre">

<unit units="celsius" />
<unit prefix="centi" units="metre" exponent="-1" />

</units>

<units name="fahrenheit_per_inch">
<unit units="fahrenheit" />
<unit units="inch" exponent="-1" />

</units>

<units name="pH_per_celsius">
<unit units="pH" />
<unit units="celsius" exponent="-1" />

</units>

FIGURE 18: Some examples of the use of the <units> element demonstrating the definition of simple and
complex units.

http://www.cellml.org/public/specification/20021106/appendices.pdf 16

xnew [inch] =
(

2.54 10−2
)

[

inch
metre

]

xold [metre]

= 0.0254

[

inch
metre

]

xold [metre]

(23)

The definition of fahrenheit is in terms of celsius, which is an SI derived unit. The expansion
from celsius to kelvin, an SI base unit, is obtained from Section 2.1.1.5 of the SI standard, and is
given in Equation (24).

xnew [celsius] = 1.0

[

celsius
kelvin

]

xold [kelvin] − 273.15 [celsius] (24)

The first step in the expansion of the fahrenheit definition is given in Equation (25).

xf [fahrenheit] = 1.8

[

fahrenheit
celsius

]

xc [celsius] + 32.0 [fahrenheit] (25)

The xc term can be replaced with the expansion of the celsius definition from Equation (24), as
shown in Equation (26).

xf [fahrenheit] = 1.8
[

fahrenheit

celsius

] (

1.0
[

celsius

kelvin

]

xk [kelvin] − 273.15 [celsius]
)

+ 32.0 [fahrenheit] (26)

The 1.0 and 273.15 terms can be multiplied by the 1.8. The units on the resulting terms are the products
of the units on the operands, as described in Appendix C.3.3, and these can be simplified according to the
rules given in Appendix C.3.1. The final expansion of fahrenheit is given in Equation (27)

xf [fahrenheit] = 1.8

[

fahrenheit
kelvin

]

xk [kelvin] − 491.67 [fahrenheit] + 32.0 [fahrenheit]

= 1.8

[

fahrenheit
kelvin

]

xk [kelvin] − 459.67 [fahrenheit]

(27)

celsius per centimetre is the first of the complex units definitions given in Figure 18. The first
step in the expansion of this definition is given by Equation (28), which is obtained by substituting the
appropriate terms in Equation (??).

xnew [celsius per centimetre] =
(

10−2
)

−1

[

celsius per centimetre

celsius metre−1

]

xold

[

celsius metre−1
]

(28)

The expansion of the xold term, which has units that are a product, is not obvious. This term must be
expanded to continue. metre is an SI base unit, so need not be expanded. However, celsius is an SI
derived unit, the expansion of which is given in Equation (24). Because this expansion is to be substituted
into a complex units definition, the offset term is dropped. The next step in the expansion makes use of the
modified celsius definition in Equation (29) and the identity in Equation (30).

vnew [celsius] = 1.0

[

celsius
kelvin

]

vold [kelvin] (29)

ynew

[

metre−1
]

= 1.0

[

metre−1

metre−1

]

yold

[

metre−1
]

(30)

http://www.cellml.org/public/specification/20021106/appendices.pdf 17

The result of multiplying Equation (30) and Equation (29) is given in Equation (31).

vnew [celsius] ynew

[

metre−1
]

= 1.0

[

celsius
kelvin

]

vold [kelvin] 1.0

[

metre−1

metre−1

]

yold

[

metre−1
]

(31)

The vnew and ynew variables can be multiplied together to produce a new unknown znew which has units
which are the product of the units on vnew and ynew. Similarly zold is the product of vold and yold. The result
is given in Equation (32), where the scale factors have also been multiplied.

znew

[

celsius metre−1
]

= 1.0

[

celsius metre−1

kelvin metre−1

]

zold

[

kelvin metre−1
]

(32)

znew from Equation (32) can be substituted in place of Equation (28), and the result simplified to give
the complete expansion of celsius per centimetre shown in Equation (33).

xnew [celsius per centimetre] =
(

10−2
)

−1
[

celsius per centimetre

celsius metre−1

]

xold

[

celsius metre
−1

]

= 100.0
[

celsius per centimetre

celsius metre−1

]

1.0

[

celsius metre−1

kelvin metre−1

]

zold

[

kelvin metre
−1

]

= 100.0
[

celsius per centimetre

kelvin metre−1

]

zold

[

kelvin metre
−1

]

(33)

The definition of fahrenheit per inch can be handled in the same way. The first step in the
expansion is given by Equation (34).

xnew [fahrenheit per inch] = 1.0

[

fahrenheit per inch

fahrenheit inch−1

]

xold

[

fahrenheit inch−1
]

(34)

The expansion of xold requires the removal of the offset from the expansion of fahrenheit from
Equation (27) and the inversion of the expansion of inch from Equation (23). These are given in Equa-
tion (35) and Equation (36), respectively.

vnew [fahrenheit] = 1.8

[

fahrenheit
kelvin

]

vold [kelvin] (35)

ynew

[

inch−1
]

= 39.370

[

inch−1

metre−1

]

yold

[

metre−1
]

(36)

Multiplying Equation (35) and Equation (36) and simplifying yields Equation (37).

znew

[

fahrenheit inch−1
]

= 70.866

[

fahrenheit inch−1

kelvin metre−1

]

zold

[

kelvin metre−1
]

(37)

znew from Equation (37) can be substituted into Equation (34) in place of xold and the result simplified
to give the complete expansion of fahrenheit per inch in Equation (38).

xnew [fahrenheit per inch] = 1.0

[

fahrenheit per inch

fahrenheit inch−1

]

xold

[

fahrenheit inch−1
]

= 1.0

[

fahrenheit per inch

fahrenheit inch−1

]

70.866

[

fahrenheit inch−1

kelvin metre−1

]

zold

[

kelvin metre−1
]

= 70.866

[

fahrenheit per inch

kelvin metre−1

]

zold

[

kelvin metre−1
]

(38)

http://www.cellml.org/public/specification/20021106/appendices.pdf 18

The first step in the expansion of pH per celsius is given in Equation (39).

xnew [pH per celsius] = 1.0

[

pH per celsius

pH celsius−1

]

xold

[

pH celsius−1
]

(39)

When user-defined base units are referenced in a simple or complex units definition, they are treated in
the same way as SI base units, and not expanded. The final expansion into a combination of user-defined
and SI base units is given in Equation (40).

xnew [pH per celsius] = 1.0

[

pH per celsius

pH kelvin−1

]

xold

[

pH kelvin−1
]

(40)

C.4.3 Conversion between units definitions

In this section, the algorithm defined in Appendix C.3.5 for converting a variable’s value from one set of
units to another is presented with respect to a practical example. Figure 19 contains part of a CellML model
definition, consisting of two components and one connection. The legacy imperial component defines
a variable x with units of fahrenheit per inch. The modern si component defines a variable y
with units of celsius per centimetre. A connection between the two components maps x to y.

<component name="legacy_imperial">
<variable name="x" public_interface="out" units="fahrenheit_per_inch" />

</component>

<component name="modern_si">
<variable name="y" public_interface="in" units="celsius_per_centimetre" />

</component>

<connection>
<map_components component_1="legacy_imperial" component_2="modern_si" />
<map_variables variable_1="x" variable_2="y" />

</connection>

FIGURE 19: In this model fragment, a connection maps a variable x with units of fahrenheit per inch
to a variable y with units of celsius per centimetre.

The CellML definitions of both fahrenheit per inch and celsius per centimetre are
given in Figure 18. It was shown how to obtain expressions that relate each of these units definitions to
the SI base units in Appendix C.4.2. These expressions are reproduced in Equation (41) and Equation (42),
respectively.

xfpi [fahrenheit per inch] = 70.866

[

fahrenheit per inch

kelvin metre−1

]

wkpm

[

kelvin metre−1
]

(41)

ycpcm [celsius per centimetre] = 100.0

[

celsius per centimetre

kelvin metre−1

]

zkpm

[

kelvin metre−1
]

(42)

The value of x is transferred to the variable y in the mapping. Therefore an equation expressing
celsius per centimetre in terms of fahrenheit per inch is needed. This can be obtained by

http://www.cellml.org/public/specification/20021106/appendices.pdf 19

rearranging Equation (41) for wkpm, substituting the resulting expression in place of zkpm in Equation (42),
and simplifying the result according to the rules defined in Appendix C.3.1. This gives the expression in
Equation (43).

ycpcm [celsius per centimetre] = 100.0

[

celsius per centimetre

kelvin metre−1

]

zkpm

[

kelvin metre−1
]

=

100.0

[

celsius per centimetre

kelvin metre−1

]

70.866

[

fahrenheit per inch

kelvin metre−1

] xfpi [fahrenheit per inch]

= 1.411

[

celsius per centimetre
fahrenheit per inch

]

xfpi [fahrenheit per inch]

(43)

C.4.4 Equation dimension checking

In this section, the algorithm defined in Appendix C.3.6 for checking that an equation has consistent units
is presented with respect to a practical example. Figure 20 contains the definition of a CellML com-
ponent sodium channel m gate. This component defines three sets of units (per millisecond,
millivolt, and per millivolt), two variables (V and alpha m) and an equation that calculates the
value of alpha m.

Equation (44) gives the equation in Figure 20, where units have been omitted. Equation (45) gives the
same equation, with the units associated with each number and variable are included. The first 1.0 in the
equation is included specifically for units consistency. It would be possible to associate more complex units
with the 0.1 in the numerator of the equation, but this would not accurately reflect the intent of the original
model authors. CellML processing software is free to find this and similar terms that do not affect the
mathematics and ignore them when interpreting the equation.

alpha m = 1.0

(

0.1 (V + 25.0)

exp (0.1 (V + 25.0)) − 1.0

)

(44)

alpha m [per millisecond] = 1.0 [per millisecond] ·
(

0.1 [per millivolt] (V [millivolt] + 25.0 [millivolt])

exp (0.1 [per millivolt] (V [millivolt] + 25.0 [millivolt])) − 1.0 [dimensionless]

)

(45)

The first step in the algorithm proposed in Appendix C.3.6 for verifying that a given equation has
consistent dimensions is to convert the equation into a tree of equation parts. Equation (45) can be broken
up into the tree shown in Figure 21.

At each branch in the tree, a single operator is applied to the child nodes, combining them into a larger
parent equation part. Each equation part in the tree has units associated with it. In the case of leaf nodes,
these units are obtained from the MathML equation definition. Parent nodes have units defined by the
operator and the units on their child nodes, as described in Appendix C.3.3. Dimension checking begins
at the leaf nodes, which are recursively removed as the units are evaluated for their parent nodes, which in
turn become leaf nodes, as described in Appendix C.3.6.

In the equation tree diagram in Figure 21, the application of each operator to a set of child nodes is
denoted by a number in square brackets, where the number reflects the order in which the operations are
processed. These operations are discussed below.

http://www.cellml.org/public/specification/20021106/appendices.pdf 20

<component name="sodium_channel_m_gate">
<units name="per_millisecond">

<unit prefix="milli" units="second" exponent="-1" />
</units>
<units name="millivolt">

<unit prefix="milli" units="volt" />
</units>
<units name="per_millivolt">

<unit prefix="milli" units="volt" exponent="-1" />
</units>

<variable name="V" units="millivolt" />
<variable name="alpha_m" units="per_millisecond" />

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><eq />
<ci> alpha m </ci>
<apply><times />

<cn cellml:units="per_millisecond"> 1.0 </cn>
<apply><divide />
<apply><times />

<cn cellml:units="per_millivolt"> 0.1 </cn>
<apply><plus />

<ci> V </ci>
<cn cellml:units="millivolt"> 25.0 </cn>

</apply>
</apply>
<apply><minus />

<apply><exp />
<apply><times />
<cn cellml:units="per_millivolt"> 0.1 </cn>
<apply><plus />

<ci> V </ci>
<cn cellml:units="millivolt"> 25.0 </cn>

</apply>
</apply>

</apply>
<cn cellml:units="dimensionless"> 1.0 </cn>

</apply>
</apply>

</apply>
</apply>

</math>
</component>

FIGURE 20: Parts of the CellML definition of the Hodgkin Huxley squid axon model. The
sodium channel m gate component defines three sets of units, two variables V and alpha m, and the

calculation of alpha m.

http://www.cellml.org/public/specification/20021106/appendices.pdf 21

V + 25.00.1()exp()
V + 25.00.1()()1.0

V + 25.00.1()exp()
V + 25.00.1()

V + 25.00.1()exp()− 1.0

V + 25.00.1()exp()
V + 25.00.1()()= 1.0alpha_m

V + 25.00.1()exp()

V + 25.00.1()

V + 25.00.1

V 25.0

V + 25.00.1()

V + 25.00.1

V 25.0

1.0

alpha_m

1.0

[9]

[8]

[7]

[4]

[3]

[1]

[5]

[6]

[2]

FIGURE 21: The tree form of Equation (45), in which each non-leaf node is obtained by the application of
a single operator to its children. Each operator is represented by a number in square brackets. The effect of

each operator is discussed in the text.

1. The <plus> operator combines the variable “V ” and the number “25.0” that occur in the de-
nominator of the fraction in Equation (45). The <plus> operator requires all of its operands to be
dimensionally equivalent, as described in Appendix C.2.2. The resulting equation part will have the
same units as the operands. Both “V ” and “25.0” have units of millivolt, and so the parent
equation part “V + 25.0” also has units of millivolt.

2. The <times> operator (which is not explicitly rendered in Equation (45)) multiplies the “V + 25.0”
term that is the result of the first operation by the number “0.1” which has units of per millivolt.
The <times> operator can be applied to any operands, independent of their units, and the resulting
equation part has units that are the product of the units on the operands. In this case, the resul-
tant “0.1(V + 25.0)” term has units that are the product of millivolt and per millivolt,
which simplifies to dimensionless (as described in Appendix C.3.1).

3. The <exp> operator is a unary arithmetic operator and its operand must have units of dimensionless.
The result of applying the operator, in this case “exp(0.1(V + 25.0))”, also has units of dimensionless.

4. The <minus> operator subtracts the number “1.0”, which has units of dimensionless, from
the term resulting from operation 3. The <minus> operator requires both its operands to have the
same units and the result assumes those units.

5. The <plus> operator is applied to the variable “V ” and the number “25.0” from the numerator of
the fraction in Equation (45). Units are handled as in operation 1.

6. Exactly as in operation 2, where the operands are now in the numerator of the fraction in Equa-
tion (45).

7. The <divide> operator is applied to the results of operations 6 and 4, which both have units of
dimensionless. The <divide> operator can be applied to any operands, independent of their
units, and the result has the quotient of the units on the operands. In this case, the resulting fraction
has units of dimensionless.

8. The <times> operator is applied to the number “1.0”, which has units of per millisecond
and the result of operation 7, which has units of dimensionless. The resulting term has units of
per millisecond.

9. Finally, the <equals> operator is applied to the variable “alpha m” and the term resulting from
operation 8. The <equals> operator requires that its operands have dimensionally equivalent units.

http://www.cellml.org/public/specification/20021106/appendices.pdf 22

D Changes

D.1 Changes between the 10 August 2001 Recommendation and the 6 November
2002 Draft

Editorial Changes

• Specification Wide14

– The Bioengineering Research Group at the University of Auckland is now the Bioengineering
Institute.

– Several minor editorial changes have been made to all sections of the specification.

• Section 3.2.2: Definition of components15

– Further clarified the following sentence to indicate that the name attribute need only be unique
amongst all <component> elements in the current model: “Each <component> must have
a name attribute, the value of which is a unique identifier for the component within the current
model.”

• Section 3.3: Examples16

– Corrected the MathML equation in Figure 4.

• Section 3.4.6: The <map variables> element17

– A variable with a private interface attribute of "in"must be mapped to a single variable
owned by a component in the encapsulated set, provided the target variable has a public interface
attribute value of "out".

• Section 4.3: Examples18

– Figure 6 has three units definitions, not two.

• Section 5.2.7: Equation dimension checking19

– Spelling error: interoperability.

• Section 7.5.1: Implications of the reversible attribute20

– Added the clarifying sentence, “No assumptions must be made of the species acting in other
roles.”

• Section 8: Metadata Framework21

14http://www.cellml.org/public/specification/20021106/cellml specification.html
15http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure component element
16http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure examples
17http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure spec rules map variables element
18http://www.cellml.org/public/specification/20021106/cellml specification.html#sec math examples
19http://www.cellml.org/public/specification/20021106/cellml specification.html#sec units equation dimension checking
20http://www.cellml.org/public/specification/20021106/cellml specification.html#sec rxn reversible attribute
21http://www.cellml.org/public/specification/20021106/cellml specification.html#sec metadata

http://www.cellml.org/public/specification/20021106/appendices.pdf 23

– The W3C RDF Core Working Group published a new document in December of 2001 updating
RDF syntax (RDF/XML Syntax Specification (Revised)22). The new working draft recommends
that all attributes belonging to the RDF namespace be clarified with the prefix associated with
the RDF namespace (with the rdf prefix in this document). Thus, all about attributes have
been given the rdf prefix.

– Corrected minor grammatical errors in Sections 8.4.1 and 8.4.2.

Changes to the Language

• Specification Wide23

– CellML Namespace updated to include changes. All CellML elements have been redefined
under the CellML 1.1 Namespace.

• Section 1.2: Structure of the CellML Specification24

– Added Section 9 abstract.

• Section 2.2.1: Definition of a valid CellML identifier25

– Added restriction that an identifier must not begin with a digit.

• Section 2.2.2: Namespaces in CellML26

– Added XLink namespace for use with model import.

• Section 2.4.1: Valid CellML identifiers27

– Added restriction that an identifier must not begin with a digit.

• Section 3.2.1: Definition of a model28

– Changed text to correspond with new import features and recent ideas of component re-use.

– Added <import model> element.

• Section 3.2.2: Definition of components29

– Changed text to correspond with new import features and recent ideas of component re-use.

• Section 3.2.3: Definition of variables30

– Added description of the units model attribute.

22http://www.w3.org/TR/rdf-syntax-grammar/
23http://www.cellml.org/public/specification/20021106/cellml specification.html
24http://www.cellml.org/public/specification/20021106/cellml specification.html#sec intro spec structure
25http://www.cellml.org/public/specification/20021106/cellml specification.html#sec fundamentals identifiers
26http://www.cellml.org/public/specification/20021106/cellml specification.html#sec fundamentals namespaces
27http://www.cellml.org/public/specification/20021106/cellml specification.html#sec fundamentals rules identifiers
28http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure model element
29http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure component element
30http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure variable element

http://www.cellml.org/public/specification/20021106/appendices.pdf 24

• Section 3.2.4: Definition of connections31

– Added description of the model 1 and model 2 attributes.

• Section 3.4.1: The <model> element32

– Added <import model> element.

• Section 3.4.3: The <variable> element33

– Added the units model attribute.
– Expanded the allowed values of the initial value attribute to include the value of a name

attribute of a <variable> element declared in the current component.

• Section 3.4.5: The <map components> element34

– Added the model 1 and model 2 attributes.
– Expanded the proper use of the component 1 and component 2 attributes to include the
model 1 and model 2 attributes.

• Section 5.2.2: User defined units35

– Added the units model attribute.

• Section 5.4.2: The <unit> element36

– Added the units model attribute.

• Section 9: Importing Models37

– Newly added to specify the import feature.

• Appendix A.6: The CellML DTD38

– Incorporates the changes listed above.
– Made the relationship attribute on the <relationship ref> element optional be-

cause the relationship attribute can be placed under a user-defined namespace and still be valid
CellML.

D.2 Changes between 18 May 2001 Final Draft and the 10 August 2001 Recom-
mendation

The full list of changes made between the 18 May 2001 Final Draft and the 10 August 2001 Recommenda-
tion of the CellML 1.0 specification can be found at Appendix D of the 10 August 2001 Recommendation 39.

31http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure connection element
32http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure spec rules model element
33http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure spec rules variable element
34http://www.cellml.org/public/specification/20021106/cellml specification.html#sec structure spec rules map components element
35http://www.cellml.org/public/specification/20021106/cellml specification.html#sec units user defined units
36http://www.cellml.org/public/specification/20021106/cellml specification.html#sec units spec rules unit element
37http://www.cellml.org/public/specification/20021106/cellml specification.html#sec import model
38http://www.cellml.org/public/specification/20021106/cellml specification.html#sec cellml 1 1 dtd
39http://www.cellml.org/public/specification/20010810/cellml specification.html#changes

http://www.cellml.org/public/specification/20021106/appendices.pdf 25

D.3 Changes between 2 March 2001 Draft and the 18 May 2001 Final Draft

The complete list of changes made between the 2 March 2001 Draft and the 18 May 2001 Final Draft of the
CellML 1.0 specification can be found at Appendix D of the 18 May 2001 Final Draft40.

E-mail questions, criticism, submissions or info to info@cellml.org
Input document last modified : Thu Oct 30 16:04:30 NZDT 2003

40http://www.cellml.org/public/specification/20010518/cellml specification.html#sec changes

