
http://www.cellml.org/public/specification/20010518/model structure.pdf 1

CellML Specification
Final Draft — 18 May 2001

3 Model Structure

3.1 Introduction

Any model can be described as a network of connections between self-contained components. A compo-
nent is a functional unit that may correspond to a physical compartment, event, or species or may be just a
convenient modelling abstraction. A component contains variables and mathematical relationships that ma-
nipulate those variables. Connections exchange information between components. A connection contains
mappings between variables in two components, allowing the value of a variable in one component to be
passed to a variable in the other component.

3.2 Basic Structure

3.2.1 Definition of a model

A model is declared in CellML with a <model> element. This is the usual root element for a CellML
document. Throughout this section of the specification, all elements are in the CellML namespace unless
stated otherwise. The recommended method for specifying namespaces in a CellML document is described
in Section 2.2.31.

The <model> element has a name attribute that allows this model to be unambiguously referenced by
other models. For instance, this would be necessary if the model were to be combined with other models or
partial models to create a larger model.

A <model> element may contain any number of the elements in the following list in any order. The
recommended practice is for elements placed within the <model> element to appear in the order given
in the following list. This allows people to quickly find certain kinds of information within a CellML
document.

� <units> — A modeller can declare a set of units to use in the model, as described in Section 52 .
� <component> — Components are the smallest functional units in a model. Each component con-

tains variables that represent the key properties of the component and mathematics that describe the
behaviour of the portion of the system represented by that component.

� <group> — Groups allow the modeller to define logical and physical relationships between com-
ponents. Groups are defined using the <group> element, as discussed in Section 63 .

� <connection> — Connections are used to connect components to each other and to map vari-
ables in one component to variables in another. Connections are defined using the <connection>
element, as discussed in Section 3.2.4.

The <model> element (and indeed any of the elements in a CellML document) may define metadata
to provide context for that object. This metadata might include documentation, citations from literature, or
a modification history for the current CellML object. Adding metadata to a CellML document is discussed
in detail in Section 84.

1http://www.cellml.org/public/specification/20010518/cellml specification.html#sec fundamentals extending cellml
2http://www.cellml.org/public/specification/20010518/cellml specification.html#sec units
3http://www.cellml.org/public/specification/20010518/cellml specification.html#sec grouping
4http://www.cellml.org/public/specification/20010518/cellml specification.html#sec metadata

http://www.cellml.org/public/specification/20010518/model structure.pdf 2

3.2.2 Definition of components

Constructing a model from multiple components encourages the re-use of components. For instance, an
electro-physiological model of a cell might be organised into components that represent various ion chan-
nels. All of the mathematics that describe the behaviour of the L-type calcium channel would be defined
in a single component representing this particular ion channel. If a modeller wished to re-use the portion
of the model representing the L-type calcium channel in another model, he or she would only need to copy
this component.

A <component> element is used to declare a CellML component. It must only be used inside a
<model> element or as the root element of a CellML document. A <component> element that is the
root of a CellML document does not define a complete model. It would probably be part of a library
of standard components that could be imported and used in models. Eventually, CellML will include a
mechanism that simplifies such re-use of components. At the present time, the component would need to
be physically copied into a model document to be used in that model.

A CellML <model> may contain any number of <component> elements. Each <component>
must have a name attribute, the value of which is a unique identifier for the component within the current
model. The value of the name attribute is used to reference the component in other parts of the model, such
as in connections and groups.

A <component> may contain any of the elements in the following list in any order. Again, recom-
mended practice is for elements placed within the <component> element to appear in the order given in
the following list.

� <units> — A modeller can declare a set of units to use within the component, as described in
Section 55.

� <variable> — A component may contain any number of <variable> elements, which define
variables that may be mathematically related in the equation blocks contained in the component.
Variables are discussed in Section 3.2.3.

� <reaction> — A component may contain <reaction> elements, which are used to provide
chemical and biochemical context for the equations describing a reaction. It is recommended that
only one <reaction> element appear in any <component> element. The definition of reaction
information is described in Section 76.

� <mathml:math> — A component may contain a set of mathematical relationships between the
variables declared in this component. These equations are marked up using MathML, as discussed
in Section 47. The mathml prefix is used to indicate that the <math> element is in the MathML
namespace.

A <component> element is also a sensible place to define metadata, using the syntax presented in
Section 88.

The definitions of two <component> elements are included in the example described in Section 3.3.

3.2.3 Definition of variables

Models are usually developed to simulate the behaviour of a number of variables that have physiological
significance. Each variable in the model belongs to a single component, which may contain equations that
modify the value of that variable. The value of a variable may be passed through connections into other

5http://www.cellml.org/public/specification/20010518/cellml specification.html#sec units
6http://www.cellml.org/public/specification/20010518/cellml specification.html#sec reactions
7http://www.cellml.org/public/specification/20010518/cellml specification.html#sec mathematics
8http://www.cellml.org/public/specification/20010518/cellml specification.html#sec metadata

http://www.cellml.org/public/specification/20010518/model structure.pdf 3

components. The variable must also be declared in these components, which can then use the value of the
variable in their own equations but must not modify it.

The <variable> element is used to declare a CellML variable. It can only be used inside a <component>
element. Variables must define a name attribute, the value of which must be unique across all variables in
the current component. The name of a variable is used when referencing variables inside connections (see
Section 3.2.4) and reactions (see Section 79). All variables must also define a units attribute. The value
of this attribute must correspond to one of the keywords in the CellML units dictionary or the value of the
name attribute of a units element defined within the current component or model, as described in Section
510.

A <variable> element may also have the following attributes:

� initial value — This attribute provides a convenient means for specifying the initial or default
value of a scalar variable in a simulation with time as the independent variable. The variable’s value
may be reset or modified in equations in the current component. The initial values of variables
need not be set in the model definition at all; they could instead be set in a configuration file loaded
separately by the model processor.

� public interface — This attribute specifies the interface exposed to components in the parent
and sibling sets (see below). The public interface must have a value "in", "out", or "none". The
absence of a public interface attribute implies a value of "none".

� private interface — This attribute specifies the interface exposed to components in the en-
capsulated set (see below). The private interface must have a value "in", "out", or "none". The
absence of a private interface attribute implies a value of "none".

Whether or not a component may obtain the value of a variable in another component depends on the
public interface and private interface attributes on the variable declaration, and the place of
the two components in the encapsulation hierarchy. Encapsulation allows the modeller to hide a complex
network of components from the rest of the model and provide a single component as an interface to the
hidden network. Encapsulation effectively divides the network into layers, where connections between the
layers must only be made through the interface components.

The components to which any given component may connect can be divided into four distinct sets
with respect to any given component (the current component). The set of all components immediately
encapsulated by the current component is referred to as the encapsulated set. If the current component
is encapsulated, then the encapsulating component is referred to as the parent, and the set of all other
components encapsulated by the same parent is referred to as the sibling set. If the current component is
not encapsulated, then it has no parent and the sibling set consists of all other components in the model that
are not encapsulated. All other components, which are not available to make connections with the current
component, make up the hidden set. The encapsulation hierarchy and its effects on variable mapping are
described in Section 611.

When a variable is declared with either a public interface or private interface attribute
value of "in", then the value of that variable must be imported from another component. Otherwise, a
variable’s value must be set and modified in the current component. The variable is then said to belong to
or be owned by the current component.

Eventually, it will be possible to specify the temporal and/or spatial variation of a variable’s value using
FieldML12. The capability to include FieldML is still under development. At the present time, all variables
must have singular values.

9http://www.cellml.org/public/specification/20010518/cellml specification.html#sec reactions
10http://www.cellml.org/public/specification/20010518/cellml specification.html#sec units
11http://www.cellml.org/public/specification/20010518/cellml specification.html#sec grouping
12http://www.physiome.org.nz/sites/physiome/fieldml/pages/index.html

http://www.cellml.org/public/specification/20010518/model structure.pdf 4

3.2.4 Definition of connections

Connections provide the mechanism for mapping variables declared within one component to variables in
another component, allowing information to be exchanged between the various components in the network.
The mapping of variables involves the transfer of a variable’s value from one component to another. There
will be many such mappings present in a network. The transfer of a variable’s value may involve a con-
version to account for the units in which each component expects the variable’s value to be defined. (More
information on units conversion can be found in Section 513 .)

The complete set of variable mappings between any two components constitutes a connection. Only one
connection may be created between any given pair of components in a model. Each connection references
the two components involved in the connection, and then maps variables from each of the components
together. It is not necessary for the variables that are to be mapped to each other to have the same name.
However, the interface attributes of each pair of variables must be compatible — an "out" variable in one
component’s interface must map to an "in" variable in the other component’s interface. The direction
of each mapping is determined by the value of the public interface and private interface
attributes on the two variables: the value is always passed from the variable with an interface value of
"out" to the variable with an interface value of "in". The value of a variable declared with an interface
value of "out" may be passed out to any number of variables in other components declared with interface
values of "in". The component to which a variable belongs is found by following the variable back from
"in" to "out" interfaces, following the model’s connections.

The <connection> element is used to declare a CellML connection. It can only appear inside a
<model> element.

A <connection> element must contain exactly one <map components> element, which is used
to reference the two components involved in the connection. Each <map components> element must
define component 1 and component 2 attributes, the values of which are the names of the components
being referenced. In CellML 1.0, the referenced components must be defined within the current <model>
element. It is anticipated that it will eventually be possible to reference components from other models,
allowing models to be connected into larger models.

A <connection> element must also contain one or more <map variables> elements, which
are used to reference the variables being mapped between the two components in the connection. Each
<map variables> element must define variable 1 and variable 2 attributes, the values of which
are equal to the names of variables defined in the components referenced by the component 1 and
component 2 attributes on the <map components> element, respectively.

The CellML example discussed in Section 3.3 demonstrates the definition of a <connection> ele-
ment.

3.3 Examples

Figure 4 contains a portion of the CellML encoding of the Hodgkin-Huxley squid axon model published
in 1952. The excerpt contains the definitions of the components corresponding to the membrane and the
sodium channel, and the connection between the two components. Most of the complexity from the full
model definition has been left out for conciseness and clarity. This example is only used to demonstrate the
standard use of the <component>, <variable>, and <connection> elements.

The membrane component declares six variables, which are divided into three categories. The first
variable is called V, and it represents the membrane voltage in the model. It has a public interface
attribute value of "out", which indicates that the variable “belongs” to this component and that its value
may be obtained by other components in the model via connections. It references a units definition by the
name of millivolt (this definition is not included here), and is given an initial value of -75.0 millivolts.

13http://www.cellml.org/public/specification/20010518/cellml specification.html#sec units

http://www.cellml.org/public/specification/20010518/model structure.pdf 5

<model
name="hodgkin_huxley_model_excerpt"
xmlns="http://www.cellml.org/cellml/1.0#"
xmlns:cellml="http://www.cellml.org/cellml/1.0#"
xmlns:cmeta="http://www.cellml.org/metadata/1.0#">

<component name="membrane">
<!-- the following variable is used in other components -->
<variable

name="V" initial_value="-75.0"
public_interface="out" units="millivolt" />

<!-- the following variables are imported from other components -->
<variable name="time" public_interface="in" units="millisecond" />
<variable name="i_Na" public_interface="in" units="microA_per_cm2" />
<variable name="i_K" public_interface="in" units="microA_per_cm2" />
<variable name="i_L" public_interface="in" units="microA_per_cm2" />

<!-- the following variable is only used internally -->
<variable name="C" initial_value="1.0" units="microF_per_cm2" />

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="voltage_current_relationship"><eq />

<apply><diff />
<bvar><ci> time </ci></bvar>
<ci> V </ci>

</apply>
<apply><divide />

<apply><plus />
<ci> i Na </ci>
<ci> i K </ci>
<ci> i L </ci>

</apply>
<ci> C </ci>

</apply>
</apply>

</math>
</component>

<component name="sodium_channel">
<!-- the following variables are used in other components -->
<variable name="i_Na" public_interface="out" units="microA_per_cm2" />

<!-- the following variables are imported from other components -->
<variable name="time" public_interface="in" units="millisecond" />
<variable name="V" public_interface="in" units="millivolt" />

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply id="i_Na_calculation"><eq />

<ci> i Na </ci>
... <!-- a function of V & time -->

</apply>
</math>

</component>

<connection>
<map_components component_1="membrane" component_2="sodium_channel" />
<map_variables variable_1="V" variable_2="V" />
<map_variables variable_1="i_Na" variable_2="i_Na" />

</connection>

</model>

FIGURE 4: A small portion of the CellML definition of the Hodgkin-Huxley squid axon model from 1952.
This excerpt contains the definition of the components corresponding to the membrane and the sodium chan-
nel, and the connection between them. Much detail has been omitted, but this example clearly demonstrates
the relationship between the <component>, <variable> and <connection> elements. See the text

for more information.

http://www.cellml.org/public/specification/20010518/model structure.pdf 6

The subsequent four variables are time, i Na (sodium current), i K (potassium current) and i L
(leakage current). They are all declared with a public interface attribute value of "in", which
indicates that their values are obtained from other components via connections.

Finally, a variable C (capacitance) is declared. This <variable> element defines neither a public interface
or a private interface attribute. Both of these attributes therefore assume the default value of
"none", which means that the variable belongs to the current component and is not visible to other com-
ponents in the model.

After the variable declarations, a <math> element in the MathML namespace is used to define an
equation relating V to the other variables. Only the values of the variables belonging to a component
may be mathematically modified in that component. The full set of equations defined in the membrane
component is too lengthy to include here. The equation included in Figure 4 is the well known differential
equation from the Hodgkin Huxley model:

���

�����	��

�

� ������� ����� �

� (1)

The sodium channel component declares three variables, all of which represent quantities that
were also declared in the membrane component. The i Na variable declared in this component has a
public interface attribute value of "out", indicating that the sodium current belongs to this com-
ponent. The value of the sodium current is calculated in this component, although the actual math has been
omitted.

Finally, a <connection> element references the membrane and sodium channel components
using a <map components> element, and maps the V and i Na variables in each component together, us-
ing two <map variables> elements. The value of the variable 1 attribute on each <map variables>
element references the corresponding variable in the membrane component, which is the component ref-
erenced by the component 1 attribute on the <map components> element. Similarly, the values of the
variable 2 attributes reference variables in the sodium channel component.

3.4 Rules for CellML Documents

The following are the rules for using the <model>, <component>, <variable>, <connection>,
and <map components> elements, and <map variables> elements.

3.4.1 The <model> element

1. Allowed use of the <model> element

� A <model> element must contain only the following elements, which may appear in any order:

– <units>, <component>, <connection>, and <group> elements in the CellML
namespace,

– metadata framework elements, as described in Section 814.

[Recommended practice is to define the child elements in the CellML namespace in the order
stated above.]

� Each <model> element must define a name attribute.

2. Allowed values of the name attribute

� The value of the name attribute must be a valid CellML identifier as discussed in Section 2.2.115 .

14http://www.cellml.org/public/specification/20010518/cellml specification.html#sec metadata
15http://www.cellml.org/public/specification/20010518/cellml specification.html#sec fundamentals identifiers

http://www.cellml.org/public/specification/20010518/model structure.pdf 7

3.4.2 The <component> element

1. Allowed use of the <component> element

� A <component> element must contain only the following elements, which may appear in any
order:

– <units> and <variable> elements in the CellML namespace,
– <math> elements in the MathML namespace,
– metadata framework elements, as described in Section 816.

[Recommended practice is to define the child elements in the CellML and MathML namespaces
in the order stated above. Note that a <component> element must not appear inside another
<component> element. Such nesting could be intended to indicate a logical encapsulation
relationship, a geometric containment relationship, or some other relationship between the two
components. There is no reason to assume that the nesting hierarchy produced for one type
of relationship would be consistent with the hierarchy produced for other types of relationship.
Therefore, CellML defines these relationships using the <group> element, rather than nesting
of <component> elements.]

� Each <component> element must define a name attribute.

2. Allowed values of the name attribute

� The value of the name attribute must be a valid CellML identifier as discussed in Section 2.2.117 .
� The value of the name attribute must be unique across all <component> elements contained

in the parent <model> element.

3.4.3 The <variable> element

1. Allowed use of the <variable> element

� A <variable> element must contain only the following elements, which may appear in any
order:

– metadata framework elements, as described in Section 818.
� Each <variable> element must define a name attribute and a units attribute. It may also

define public interface, private interface, and initial value attributes.

2. Allowed values of the name attribute

� The value of the name attribute must be a valid CellML identifier as discussed in Section 2.2.119 .
� The value of the name attribute of a <variable> element must be unique across all <variable>

elements contained in the same <component> element.

[Two variables in the same component must not have the same name. However, two variables
in different components may have the same name, and a variable may have the same name as its
parent component.]

3. Allowed values of the units attribute
16http://www.cellml.org/public/specification/20010518/cellml specification.html#sec metadata
17http://www.cellml.org/public/specification/20010518/cellml specification.html#sec fundamentals identifiers
18http://www.cellml.org/public/specification/20010518/cellml specification.html#sec metadata
19http://www.cellml.org/public/specification/20010518/cellml specification.html#sec fundamentals identifiers

http://www.cellml.org/public/specification/20010518/model structure.pdf 8

� The value of the units attribute must either be one of the keywords defined in the standard
dictionary or the value of the name attribute on a <units> element defined in the current
component or model.
[The dictionary and the units element are described in Section 520.]

4. Allowed values of the public interface attribute

� If present, the value of the public interface attribute must be "in", "out", or "none".
� If not present, its value defaults to "none".

5. Allowed values of the private interface attribute

� If present, the value of the private interface attribute must be "in", "out", or "none".
� If not present, its value defaults to "none".

6. Proper use of the public interface and private interface attributes

� A <variable> element must not define both public interface and private interface
attributes with values equal to "in".
[A variable’s value must only be obtained via one mapping.]

7. Allowed values of the initial value attribute

� If present, the value of the initial value attribute must be a real number.
� The absence of an initial value attribute implies nothing.

[The absence of this attribute would usually mean either that the variable does not need an initial
value or that this value will be supplied in a parameter file or by the user at the time simulations
using the model are run.]

8. Proper use of the initial value attribute

� An initial value attribute must not be defined on a <variable> element with a public interface
or private interface attribute with a value of "in".
[These variables receive their value from variables belonging to another component.]

3.4.4 The <connection> element

1. Allowed use of the <connection> element

� A <connection> element must contain only the following elements, which may appear in
any order:

– <map components> and <map variables> elements in the CellML namespace,
– metadata framework elements, as described in Section 821.

� Each <connection> element must contain exactly one <map components> element.
� Each <connection> element must contain at least one <map variables> element.

[It does not make sense to define a connection that does not map variables together. This
rule prevents software from using empty connections to imply information not defined in this
specification.]

20http://www.cellml.org/public/specification/20010518/cellml specification.html#sec units
21http://www.cellml.org/public/specification/20010518/cellml specification.html#sec metadata

http://www.cellml.org/public/specification/20010518/model structure.pdf 9

3.4.5 The <map components> element

1. Allowed use of the <map components> element

� A <map components> element must contain only the following elements, which may appear
in any order:

– metadata framework elements, as described in Section 822.
� Each <map components> element must define a component 1 attribute and a component 2

attribute.

2. Allowed values of the component 1 attribute

� The value of the component 1 attribute must equal the value of the name attribute of a
<component> element contained within the current <model> element.

3. Allowed values of the component 2 attribute

� The value of the component 2 attribute must equal the value of the name attribute of a
<component> element contained within the current <model> element.

4. Proper use of the component 1 and component 2 attributes

� The component 1 and component 2 attributes on a single <map components> element
must not have the same value.

[A connection must link two different components.]
� Each <map components> element contained within <connection> elements that are con-

tained within a given <model> element must define a unique pair of component 1 and
component 2 attribute values.
[There can only be one connection between any two components in a network. This prevents
setting up inconsistent, circular, or duplicate variable mappings between any two components in
the network. However, it does not prevent a model author from creating inconsistent mathemat-
ical relationships between the variables.]

3.4.6 The <map variables> element

1. Allowed use of the <map variables> element

� A <map variables> element must contain only the following elements, which may appear
in any order:

– metadata framework elements, as described in Section 823.
� Each <map variables> element must define a variable 1 attribute and a variable 2

attribute.

2. Allowed values of the variable 1 attribute

� The value of the variable 1 attribute must equal the value of the name attribute of a <variable>
element contained in the <component> element referenced by the component 1 attribute
on the <map components> element within the current <connection> element.

22http://www.cellml.org/public/specification/20010518/cellml specification.html#sec metadata
23http://www.cellml.org/public/specification/20010518/cellml specification.html#sec metadata

http://www.cellml.org/public/specification/20010518/model structure.pdf 10

3. Allowed values of the variable 2 attribute

� The value of the variable 2 attribute must equal the value of the name attribute of a <variable>
element contained in the <component> element referenced by the component 2 attribute
on the <map components> element within the current <connection> element.

4. Proper use of the <map variables> element to map variables to each other

[The rules for mapping a variable to other variables depend on the encapsulation hierarchy of the com-
ponent that owns the variable. This hierarchy divides the rest of the components in the model into par-
ent, sibling, encapsulated, and hidden sets, as described in Section 3.2.3. The public interface
attribute defines the availability of a variable to the parent component and components in the sibling
set. The private interface attribute defines the availability of a variable to components in the
encapsulated set. Variables are not available to components in the hidden set.]

� Variables with a public interface or private interface attribute value of "in"
must be mapped to variables with a public interface or private interface attribute
value of "out".

� A variable with either a private interface or public interface attribute value of
"in" must be mapped to no more than one other variable in the model.
[Note that a similar restriction does not apply to variables with interface values of "out". An
output variable can be mapped to multiple input variables in various components in the current
model.]

� A variable with a public interface attribute value of "in" must be mapped to a single
variable owned by a component in the sibling set, provided the target variable has a public interface
attribute value of "out", or to a single variable owned by the parent component, provided the
target variable has a private interface attribute value of "out".

� A variable with a public interface attribute value of "out" may be mapped to variables
owned by components in the sibling set, provided the target variables have public interface
attribute values of "in". It may also be mapped to variables owned by the parent component,
provided the target variables have private interface attribute values of "in".

� A variable with a private interface attribute value of "in" may be mapped to a sin-
gle variable owned by a component in the encapsulated set, provided the target variable has a
public interface attribute value of "out".

� A variable with a private interface attribute value of "out"may be mapped to variables
owned by components in the encapsulated set, provided the target variables have public interface
attribute values of "in".

3.5 Rules for Processor Behaviour

3.5.1 Mapping of variables

� A <map variables> element maps together two variables from the components referenced by
the component 1 and component 2 attributes on the <map components> element within the
current <connection> element. The variable 1 attribute references a variable defined in the
component referenced by the component 1 attribute, and the variable 2 attribute references a
variable defined in the component referenced by the component 1 attribute. Variable mappings
specifically do not depend on variable names.

E-mail questions, criticism, submissions or info to info@cellml.org
Input document last modified : Sat May 19 00:36:14 NZST 2001

