
http://www.cellml.org/public/specification/20010518/fundamentals.pdf 1

CellML Specification
Final Draft — 18 May 2001

2 Fundamentals

2.1 Introduction

This section of the CellML specification introduces some concepts that are used throughout the entire lan-
guage, and defines rules that apply to all or many of the other parts of the specification. These include the
definition of names and use of namespaces in CellML.

2.2 Basic Structure

2.2.1 Definition of a valid CellML identifier

The most common use of a CellML identifier is the name attribute required on many basic elements in
CellML. The value of this attribute can be used to reference that element from elsewhere in the model
definition or from another model definition altogether. An object’s name can generally be thought of as a
unique identifier for that object. Although the XML specification defines a mechanism for specifying that
the value of an attribute is unique across an entire document (with the ID attribute type), this functionality
is not used in CellML 1.0 because an object’s name need only be unique across its own class of objects.

The generation of computer code for running simulations is one of the target applications for CellML.
The value of an object’s name attribute is intended to be a suitable name for the same object when it
is represented in computer code. For this reason, CellML identifiers must consist of only alphanumeric
characters and the underscore character (“ ”), and are subject to some additional constraints outlined below.
These names will generally not be the most effective way of identifying the object to humans working with
CellML models, as it is not possible to include whitespace or formatting. More human readable names can
be defined and associated with CellML objects using the metadata functionality introduced in Section 81 .

The XML specification is based on the Unicode standard, which defines a scheme for 16 bit character
encoding. Thus it is possible to include, for instance, Japanese characters in a valid XML document. In
the interests of making the code generation process as convenient as possible for those using mainstream
programming languages, CellML identifiers are subject to the following constraints:

� An identifier must consist only of alphanumeric characters from the US-ASCII character set and
underscore characters,

� An identifier must contain at least one alphanumeric character.

Convenient code generation is also the reason why colons, periods, and hyphens may not appear in
CellML identifiers. CellML identifiers are case sensitive: a variable with an identifier of ABC is different
from a variable with an identifier of abc.

The specification of a valid CellML identifier is identical to the definition of a valid object name in
SBML2. This should simplify the process of translating model definitions between the two languages.

2.2.2 Namespaces in CellML

Namespaces in XML3 is a companion specification to the XML 1.0 specification4. XML namespaces add a
1http://www.cellml.org/public/specification/20010518/cellml specification.html#sec metadata
2http://www.cds.caltech.edu/erato/
3http://www.w3.org/TR/1999/REC-xml-names-19990114/
4http://www.w3.org/TR/2000/REC-xml-20001006

http://www.cellml.org/public/specification/20010518/fundamentals.pdf 2

second level of naming to elements and attributes allowing processing software to distinguish between ele-
ments and attributes from different languages. A namespace is identified by a Uniform Resource Identifier5

(URI), which has the feature of being unique. The value of a namespace URI need have nothing to do with
the XML document that uses it, but typically points to a document that defines the rules for the language.
The URI may be mapped to a prefix, which may then be used in front of element and attribute names,
separated by a colon. If not mapped to a prefix, the URI sets the default namespace for the current element
and all of its children.

The CellML 1.0 specification defines a small number of elements and attributes and a namespace with
which they must be associated. Putting CellML elements and attributes in the CellML namespace allows
them to be distinguished from elements and attributes from other vocabularies with which CellML syntax
might be combined in a CellML document. For instance, CellML makes use of the MathML vocabulary for
the definition of equations, and all MathML elements must be placed in the MathML namespace in order
for CellML processing software to recognise those elements. The use of namespaces also allows processing
software to distinguish elements and attributes from different versions of the CellML specification. Appli-
cations that store their own proprietary data within a CellML document must define their own namespaces,
and associate their own elements and attributes with those namespaces, as discussed in Section 2.2.3.

This specification is primarily concerned with the rules and semantics that relate to the elements and
attributes in the CellML namespace, which are used in the definition of model structure. It is an error
if documents contain elements and attributes in the CellML namespace that are not defined in this spec-
ification. This specification also defines how elements and attributes in the MathML, RDF and CellML
Metadata namespaces can be combined with elements and attributes in the CellML namespace, and how
processing software should deal with content in those namespaces. MathML is particularly important to
CellML, because content in this namespace is considered as fundamental as content in the CellML names-
pace. Metadata is defined using elements in the RDF namespace, and linked to CellML elements using an
attribute in the CellML Metadata namespace, as described in Section 86. Any CellML element may contain
elements and attributes in other namespaces, which CellML processing software is free to ignore.

Table 1 lists the names, URIs and recommended prefixes of the namespaces referenced in this speci-
fication. For interoperability, the root element of any CellML document should set the default namespace
and the map the cellml prefix to the CellML 1.0 namespace URI. The latter simplifies the association of
elements and attributes with the CellML namespace in regions of the document where the default names-
pace is not the CellML namespace. For instance, the MathML elements used to define equations are typ-
ically placed inside a <math> element that changes the default namespace to the MathML namespace.
A cellml:units attribute in the CellML namespace can then be added to each of MathML’s <cn>
elements without having to redeclare the CellML namespace every time it is used.

Namespace Name Namespace URI Recommended Prefix
CellML "http://www.cellml.org/cellml/1.0#" cellml
CellML Metadata "http://www.cellml.org/metadata/1.0#" cmeta
MathML "http://www.w3.org/1998/Math/MathML" mathml
RDF "http://www.w3.org/1999/02/22-rdf-syntax-ns#" rdf

TABLE 1: The names, URIs and recommended prefixes of the namespaces referenced in this specification.
See text for more details.

5http://www.ietf.org/rfc/rfc2396.txt
6http://www.cellml.org/public/specification/20010518/cellml specification.html#sec metadata

http://www.cellml.org/public/specification/20010518/fundamentals.pdf 3

2.2.3 Extending CellML documents

Any namespace with a URI not defined in Table 1 is an extension namespace. Any element in an extension
namespace is an extension element. Any attribute in an extension attribute is an extension attribute. Model
authors and CellML processing software may store information not covered by the CellML specification in
a CellML document by defining their own extension elements and extension attributes. When authors and
implementors define extension namespaces, it is recommended that they use URIs under their jurisdiction.
Extension elements and extension attributes may appear anywhere in a CellML document, as long as the
result is well-formed XML.

For interoperability, CellML processing software should respect the extension elements and attributes
of other applications. If a model is created in application A, which adds its own extension elements, and
is subsequently edited in application B, application B should attempt to include application A’s extension
elements in its output, even if these extension elements are now invalid. Applications will need to validate
their own extension data if a CellML document is read in from a non-trusted location.

The namespace extension mechanism provides a convenient way to associate a small amount of application-
specific information with a model defined in CellML. However, it is recommended that applications needing
to store large amounts of information, such as rendering or simulation information, do so in a separate docu-
ment. This will make CellML documents easier to exchange, and will prevent the loss of application-specific
information if the model is passed through applications unaware of the extensions.

2.3 Examples

Figure 1 contains some example CellML elements, each of which defines a name attribute. The values of
the name attribute on the first three elements are valid CellML identifiers. The values of the name attribute
on the last two elements are invalid identifiers.

<!--
The following elements have name attributes with valid values.

-->

<component name="my_favorite_component" />

<variable name="_ca2_conc" units="millimolar" />

<model name="model1345" />

<!--
The following elements have name attributes with invalid values.
Names may not consist purely of underscores or contain colons.

-->

<component name="___" />

<component name="my_model:my_component" />

FIGURE 1: XML elements defining name attributes. Valid and invalid CellML identifiers are shown, as noted
in the comments.

Figure 2 contains portions of a typical CellML document that demonstrate the recommended use of
namespaces. The root element sets the default namespace to the CellML namespace URI and also explicitly

http://www.cellml.org/public/specification/20010518/fundamentals.pdf 4

maps the CellML namespace to the cellml prefix. The <math> element that encloses a set of equations
inside a component element resets the default namespace to the MathML namespace. The units attribute
on the <cn> element (which is in the MathML namespace) is placed in the CellML namespace by using
the previously-defined cellml prefix.

<model
name="simple_electrophysiological_model"
xmlns="http://www.cellml.org/cellml/1.0#"
xmlns:cellml="http://www.cellml.org/cellml/1.0#">

...

<component name="extra_cellular_space">
...
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><eq />

<apply><diff />
<bvar><ci> time </ci></bvar>
<ci> Na </ci>

</apply>
<apply><times />
<cn cellml:units="dimensionless"> -1.0 </cn>
<ci> I Na </ci>

</apply>
</apply>
...

</math>
</component>

...

</model>

FIGURE 2: A CellML fragment demonstrating the recommended use of namespaces in a CellML document.
This fragment is taken from the simple electro-physiological model example on the CellML website.

Figure 3 demonstrates how software can embed its own information inside a valid CellML document
using XML namespaces. The <model> element sets the default namespace to the CellML namespace,
and maps the app prefix to an extension namespace (i.e., one not defined in Table 1). The app prefix is
then used to define an <app:component rendering information> element and two attributes on
a <component> element.

2.4 Rules for CellML Documents

2.4.1 Valid CellML identifiers
� The following is definition of a valid CellML identifier using a Extended Backus-Naur Form (EBNF)

notation:

letter ::= ’a’...’z’,’A’...’Z’

http://www.cellml.org/public/specification/20010518/fundamentals.pdf 5

<model
name="cellml_model_with_extensions"
xmlns="http://www.cellml.org/cellml/1.0#"
xmlns:app="http://www.software.com/cellml_processor"
xmlns:cellml="http://www.cellml.org/cellml/1.0#">

<app:component_rendering_information>
cell : blue
membrane : yellow
channel : red

</app:component_rendering_information>

<component
name="cell"
app:component_type="cell"
app:render_corners="100, 100, 400, 400" />

</model>

FIGURE 3: A CellML document demonstrating the use of XML namespaces to embed application specific
data inside a CellML document. The extension namespace was invented for demonstration purposes only.

digit ::= ’0’...’9’
name ::= (’_’)* (letter | digit) (letter | ’_’ | digit)*

[A valid CellML identifier must consist of only letters, digits or underscores, and must contain at
least one letter or digit. The variant of EBNF used above is defined in Section 6 of the XML 1.0
Recommendation7.]

2.4.2 Proper use of the CellML namespace

� A document must not contain elements or attributes in the CellML namespace that are not defined in
this specification.

[Documents containing unknown elements or attributes in the CellML namespace are not valid
CellML documents. Rules regarding the use of elements in the other namespaces defined in Ta-
ble 1 are given in the appropriate sections. Note that attributes without an explicit prefix declaration
are assumed to be in the same namespace as their parent element.]

2.4.3 Extension namespaces

� Although not explicitly stated throughout this specification, a document author may add extension
elements and extension attributes to any CellML element in a CellML document without affecting the
validity of the document.

[Note that attributes without an explicit prefix declaration are assumed to be in the same namespace
as their parent element.]

7http://www.w3.org/TR/2000/REC-xml-20001006#sec-notation

http://www.cellml.org/public/specification/20010518/fundamentals.pdf 6

� For interoperability, elements in the CellML namespace set should not be defined inside extension
elements.

[Specifically, applications should not define important model structure, mathematics or metadata
information within extension elements, that other applications are free to ignore.]

2.5 Rules for Processor Behaviour

2.5.1 Treatment of CellML identifiers
� CellML processing software must handle identifiers in a case-sensitive manner.

[Two CellML elements of the same type may be defined with identifiers of A and a. Processing
software is expected to match the identifiers in a case-sensitive manner when those elements are
referenced at other places in the document.]

2.5.2 Treatment of attribute namespaces
� CellML processing software must treat attributes without an explicit namespace declaration as if they

were in the same namespace as their parent element.

2.5.3 Treatment of extension namespaces

� CellML processing software may ignore extension elements and extension attributes.

[If the namespace is unrecognised, then software should probably alert the user to its presence. Polite
software should attempt to store non-CellML data, so that it can write it out again when it exports
the document. Software should validate its own non-CellML data carefully when reading documents
from a non-trusted location.]

� CellML processing software may ignore the contents of extension elements.

E-mail questions, criticism, submissions or info to info@cellml.org
Input document last modified : Sat May 19 00:36:14 NZST 2001

