
http://www.cellml.org/public/specification/20010302/grouping.pdf 1

CellML Specification

Draft — 2 March 2001

6 Grouping

6.1 Introduction

It is often useful to organise groups of components within a model into a hierarchical structure. This struc-
ture might reflect the logical organisation of components within the group or their physical configuration.
CellML provides a single mechanism for the specification of both of these forms of hierarchy. This mech-
anism is based on a grouping scheme that allows model authors to create numerous hierarchical structures
over a single network of components. The parent-child relationships in one hierarchical grouping need not
necessarily be consistent with those specified in another grouping, a situation that could not be supported
by nesting of component definitions.

It is anticipated that models will typically be defined as a network, with hierarchical relationships defined
between groups of components at different places within the model. CellML processing software is free
to treat these structures as discontinuous. Alternatively, it may combine structures that represent the same
relationship into a single hierarchy by assuming that the root nodes of any hierarchical arrangements of
components are all children of a single imaginary component. This imaginary component is not explicitly
defined within the CellML document and has no properties.

The definition of a logical hierarchy of components in a network is known as “encapsulation”. Encap-
sulation allows the modeller to hide a group of components from the rest of the model by using a single
component as an interface to the hidden subnetwork. The parent component hides the details of one or more
child components from the rest of the model. Encapsulation provides a powerful mechanism for simplifying
the structure of the model by preventing connections between specified sets of components. Components
in the main network may not connect to the child components in the subnetwork — all variables must be
mapped through the parent interface component. Components in the subnetwork may only be connected
to the interface component and to other components in the same subnetwork, which may include further
levels of encapsulation. Therefore, a modeller wishing to re-use an encapsulated subnetwork may treat
the subnetwork as a “black box”, and deal exclusively with the interface presented by the encapsulating
component.

The definition of physical hierarchies within a model is known as “containment” in CellML. A model
author can specify that one or more child components are physically inside of a parent component without
describing the geometric aspects of the relationship in detail. This information would typically be used by
CellML processing software to provide simple renderings of a model.

Model authors are also free to extend the grouping scheme with user-defined types of relationships
between components. However, CellML processing software is only expected to recognise encapsulation
and containment relationships.

Groups do not add any additional mathematical information to the model. Model authors may not define
their own grouping relationships that are intended to imply mathematical information.

6.2 Basic Structure

6.2.1 Definition of groups

Logical and physical hierarchies are both declared using the <group> element. This element must be a
child of a <model> element. Each <group> element contains one or more <relationship ref>
elements, each of which defines a relationship attribute, the value of which references the type of

http://www.cellml.org/public/specification/20010302/grouping.pdf 2

relationship represented by the group. CellML processing software is expected to recognise two types of
relationship: encapsulation and containment, which are indicated by relationship attribute values of
"is encapsulated by" and "is contained in", respectively.

The <group> element also contains two or more <component ref> elements, each of which de-
fines two attributes. The component attribute references a component within the current model. The
role attribute indicates whether the component is the dominant component in the hierarchy. A component
referenced by a <component ref> element with a role attribute value of "major" is the dominant
component. This component is the encapsulating component in a logical encapsulation hierarchy or the
containing component in a geometric containment hierarchy. A <group> element contains one or more
<component ref> elements with a role attribute value of "minor". The components referenced by
these elements are the encapsulated components in a logical encapsulation hierarchy or the contained com-
ponents in a geometric containment hierarchy. A <group> element that defines a logical encapsulation
or geometric containment relationship must reference exactly one major component and at least one minor
component. A group element that defines a user-defined type of relationship may have any number of minor
and major components.

A single <group> element may be used to define multiple relationships between components. For
instance, encapsulation and geometric relationships may be defined within the same <group> element and
thus share the same hierarchy. This is done by including more than one <relationship ref> element
in the <group> element. Each <relationship ref> element must define a relationship at-
tribute, which may be in the CellML namespace or in an extension namespace. The value of the relationship
attribute names the type of relationship referenced by the <relationship ref> element. If the relationship
attribute is in the CellML namespace, its value must be either "is encapsulated by" or "is contained in".
A <relationship ref> element may also define a name attribute. The value of the name attribute
on <relationship ref> elements can be used to combine several <group> elements into a single
hierarchical structure (see Section 6.2.4 for more information on this).

Geometric containment relationship information is formally independent of logical encapsulation infor-
mation, but CellML processing software is free to check for inconsistencies between the two relationships
— it would generally not be useful for an encapsulating component to be physically inside one of its encap-
sulated child components.

All children of a given major component in a single hierarchy must appear within a single <group>
element. This simplifies the construction and validation of hierarchies from <group> elements. For
instance, the requirement that a component may only have a single parent in any given hierarchy would
be difficult to enforce if minor components could be scattered across several <group> elements.

6.2.2 The encapsulation relationship

Encapsulation allows the modeller to split a model into layers of complexity. A single component can be
used to encapsulate a complex partial model, and thereby provide a unified interface for all information
passing between that subnetwork and the rest of the model.

A model may only define a single encapsulation hierarchy, which may be continuous or discontinuous.
Each component in the hierarchy may have at most one parent component. If the hierarchy is continuous,
the parent component will always be another component defined within the current model. If the hierarchy
is discontinuous, it may be convenient to assume that any unencapsulated components are children of a
single imaginary component. This imaginary component makes it easier to check that the hierarchy has no
circular relationships between components.

The components in a model can be divided into four sets with respect to any given component (the
current component). The set of all components immediately encapsulated by the current component is
the encapsulated set. The parent component is the component that encapsulates the current component.
Other components encapsulated by the same parent make up the sibling set. All other components, which

http://www.cellml.org/public/specification/20010302/grouping.pdf 3

are not available to make connections with the current component, make up the hidden set. If the current
component is not encapsulated, then it has no parent and the sibling set consists of all other unencapsulated
components in the model.

These sets are best demonstrated by example. Given the network shown in Figure 10, Table 4 lists the
parent components and the components in the encapsulated, sibling, and hidden sets for a selected set of
components picked as the current component.

B

C D

E

F

H

GA

FIGURE 10: This simple model provides the basis for the demonstration of the concepts of encapsulated sets,
parents, sibling sets, and hidden sets, as described in the text. The model consists of eight components each
represented by a circle. The lines between the components represent connections, and a red arrowhead on one
of these lines indicates that the component at the tail of the arrow is encapsulated by the component at the

head of the arrow.

Current Component Encapsulated Set Parent Sibling Set Hidden Set
A B, E imaginary G C, D, F, H
B C, D A E F, G, H
C none B D A, E, F, G, H
E F A B C, D, G, H
G H imaginary A B, C, D, E, F

TABLE 4: This table lists the parent components, and the components in the encapsulated, sibling, and hidden
sets for a selected few components from the example model in Figure 10. Components A and G do not have
a real parent component, but may have an imaginary parent component that enables the formation of a single

encapsulation hierarchy.

Every variable must define its availability for use in other components. This is done with the public interface
and private interface attributes on the <variable> element. The interface exposed to the par-
ent component and components in the sibling set is defined by the public interface attribute. The
private interface attribute defines the interface exposed to components in the encapsulated set. Each
interface has three possible values: "in", "out", and "none", where "none" indicates the absence of
an interface. The separation of interfaces allows the modeller to incrementally add complexity to a encap-
sulated network without changing the interface presented to the rest of the network by the encapsulating
component.

http://www.cellml.org/public/specification/20010302/grouping.pdf 4

The mappings that are allowed between variables declared in each component are controlled by the
public and private interfaces of each variable and the prohibition on connecting an encapsulated component
to components other than its parent component, members of its sibling set, and any components it in turn
encapsulates. Variables with a public interface attribute value of "in" must be mapped to a single
variable in the sibling set with a public interface attribute value of "out" or to a single variable in
the parent of the current component with a private interface attribute value of "out". Similarly,
variables with a public interface value of "out" may be mapped to variables in components in the
sibling set with a public interface attribute value of "in" or to variables in the parent component
with a private interface value of "in". Note that defining a public interface attribute value
of "out" on a variable makes it legal to map the variable to other variables, but does not require that such a
mapping occur. If a variable has a public interface attribute value of "none", it cannot be mapped
to variables in the parent component or to variables in components in the sibling set.

Variables with a private interface attribute value of "in" must be mapped to a single variable
from a single component in the encapsulated set with a public interface attribute value of "out".
Variables with a private interface attribute value of "out" may be mapped to any variables from
components in the encapsulated set with a public interface attribute value of "in". If a variable has
a private interface attribute value of "none", it is neither input from or exposed to the components
in the encapsulated set.

If both the public interface and private interface attributes of a variable have a value of
"none", the variable can only be used in the current component and is invisible to all other components
in the model. In order to determine which variables may be modified in the current component, we must
determine if either the public interface attribute or the private interface attribute has a value
of "in". If so, the variable is declared elsewhere and its value may not be mathematically modified in the
current component. If not, the variable belongs to the current component.

The two interface attributes of a variable are completely independent with one exception: it is invalid
for a variable to have both public interface and private interface attributes with value "in".
An interface with value "in" reflects an unmet need in the current component that must be satisfied — this
need can be met in either the public or private interface, but not both.

6.2.3 The containment relationship

The is contained in relationship allows the modeller to specify that a particular component is physi-
cally inside another. This might be used by software for the rendering of a model. Containment relationships
can be specified either in combination with or independent of encapsulation relationships. Containment re-
lationships do not restrict any aspect of model definition or behaviour.

6.2.4 Named containment hierarchies

CellML allows the definition of multiple containment hierarchies over the same network model. This func-
tionality allows the modeller to define several different ways of organising the same model, each of which
might highlight a different aspect of the model’s physical structure. This functionality has been included
in CellML for extended compatibility with AnatML1, an XML-based language for describing anatomical
structures.

A containment hierarchy is created when several <group> elements contain <relationship ref>
elements with a relationship attribute value of "is contained in" and the same name attribute
value. Any <group> elements that contain <relationship ref> elements with a relationship
attribute value of "is contained in" and that do not define a name attribute are also considered to
form a single grouping hierarchy.

1http://www.physiome.org.nz/

http://www.cellml.org/public/specification/20010302/grouping.pdf 5

As was the case for encapsulation grouping, a containment hierarchy may be continuous or discon-
tinuous. Each component in the hierarchy may have at most one parent component. If the hierarchy is
continuous, the parent component will always be another component defined within the current model. If
the hierarchy is discontinuous, it may be convenient to assume that any components not already contained
within other components are children of a single imaginary component. This imaginary component makes
it easier to ensure that the hierarchy has no circular relationships between components.

6.2.5 User-defined relationship types

Modellers are free to use the grouping syntax of CellML to organise model components in ways not de-
scribed in the CellML specification. To do this, the model author defines a new relationship type, the name
of which is used as the value of the relationship attribute on the <relationship ref> element.
The relationship attribute must be placed in an extension namespace, because future versions of the
CellML specification may define additional relationship types, the names of which could otherwise conflict
with user-defined relationship types. If a modeller uses a non-standard value for the relationship at-
tribute, the value used should indicate the relationship between minor and major components. A <group>
element that defines a user-defined type of group is free to contain only minor components. For example,
a modeller may define a grouping class called "is next to", used to tell a processor that one minor
component is physically adjacent to another.

Modellers are free to use the name attribute on the <relationship ref> element to specify multi-
ple hierarchies for user-defined relationship types, as is possible for the containment relationship.

This specification does not provide a mechanism by which modellers may specify the meaning of a
user-defined type of relationship. This definition must be provided by the processing software declaring the
new relationship type.

6.3 Examples

Figure 11 demonstrates the use of the <group> element to define an encapsulation relationship. This ex-
ample is taken from the two reaction pathway with encapsulation example2 from the examples section of the
CellML website. It shows how a component representing an overall reaction (total reaction) can en-
capsulate components representing intermediate reactions (first reaction and second reaction)
and their by-products (C and D).

<group>
<relationship_ref relationship="is_encapsulated_by" />
<component_ref component="total_reaction" role="major" />
<component_ref component="first_reaction" role="minor" />
<component_ref component="second_reaction" role="minor" />
<component_ref component="C" role="minor" />
<component_ref component="D" role="minor" />

</group>

FIGURE 11: Example demonstrating the use of the <group> element to define a logical encapsulation rela-
tionship. See text for more details.

2http://www.cellml.org/examples/examples/signal transduction models/basic reaction models/two reaction model with encapsulation doc.html

http://www.cellml.org/public/specification/20010302/grouping.pdf 6

Figure 12 demonstrates the use of the <group> element to define encapsulation and containment re-
lationships, the construction of two named geometric hierarchies, and the specification of a custom rela-
tionship type (is next to) in an extension namespace. Most CellML models will probably only define a
single geometric hierarchy. In this case, it is not necessary to name the hierarchy, since all unnamed groups
are assumed to belong to the same geometric hierarchy.

The first <group> element states that the cell membrane component is physically inside the cell
component, and that this geometric relationship is part of a geometric hierarchy called membrane. The
second <group> element states that the sodium channel and calcium channel components are
both physically inside and logically encapsulated by the cell membrane component. This completes the
membrane geometric hierarchy. The encapsulation relationship prevents the sodium and calcium channel
components from being connected to any components other than the cell membrane component, each
other, and any components they in turn encapsulate.

The third <group> element states that the two components representing parts of the sarcoplasmic
reticulum are physically inside the cell, and that this relationship is part of a geometric hierarchy called
intracellular. Finally, the fourth <group> element introduces the user-defined relationshipis next to,
and states that the the two sarcoplasmic reticulum components share this relationship. This relationship type
is declared by putting the relationship attribute in an extension namespace, and assigning it a value
of "is next to". Note that this relationship has no major or dominant component, and that CellML
processing software is free to ignore the information provided by this group.

6.4 Rules for CellML Documents

6.4.1 The <group> element

1. Allowed use of the <group> element

� A <model> element may contain any number of <group> elements.
� A <group> element must contain only the following elements, which may appear in any order:

– <relationship ref> and <component ref> elements in the CellML namespace,
– metadata framework elements, as described in Section 83.

[Recommended practice is to define the CellML namespace child elements in a <group>
element in the order stated above.]

� A <group> element must contain at least one <relationship ref> element.
� A <group> element must contain at least one <component ref> element.

6.4.2 The <relationship ref> element

1. Allowed use of the <relationship ref> element

� A <relationship ref> element must contain only the following elements, which may
appear in any order:

– metadata framework elements, as described in Section 84.
� Each <relationship ref> element must define a relationship attribute in either the

CellML namespace or an extension namespace. It may also define a name attribute.
[A relationship attribute declaring a user-defined relationship type is placed in an exten-
sion namespace. This prevent conflicts with future versions of the CellML specification, which
may define additional types of relationships in the CellML namespace.]

3http://www.cellml.org/public/specification/20010302/cellml specification.html#sec metadata
4http://www.cellml.org/public/specification/20010302/cellml specification.html#sec metadata

http://www.cellml.org/public/specification/20010302/grouping.pdf 7

<group>
<relationship_ref name="membrane" relationship="is_contained_in" />
<component_ref component="cell" role="major" />
<component_ref component="cell_membrane" role="minor" />

</group>

<group>
<relationship_ref relationship="is_encapsulated_by" />
<relationship_ref name="membrane" relationship="is_contained_in" />
<component_ref component="cell_membrane" role="major" />
<component_ref component="sodium_channel" role="minor" />
<component_ref component="calcium_channel" role="minor" />

</group>

<group>
<relationship_ref name="intracellular" relationship="is_contained_in" />
<component_ref component="cell" role="major" />
<component_ref component="network_sarcoplasmic_reticulum" role="minor" />
<component_ref component="junctional_sarcoplasmic_reticulum" role="minor" />

</group>

<group>
<relationship_ref

app:relationship="is_next_to"
xmlns:app="http://www.software.com/cellml_processor" />

<component_ref component="network_sarcoplasmic_reticulum" role="minor" />
<component_ref component="junctional_sarcoplasmic_reticulum" role="minor" />

</group>

FIGURE 12: Examples demonstrating the use of the <group> element. See text for more details.

http://www.cellml.org/public/specification/20010302/grouping.pdf 8

2. Allowed values of the relationship attribute

� The value of a relationship attribute in the CellML namespace must be "is contained in"
or "is encapsulated by".

3. Allowed values of the name attribute

� The value of the name attribute must be a valid CellML identifier as discussed in Section 2.2.15 .

[Note that unlike most other name attributes, the value of the name attribute on a <relationship ref>
element is not expected to be unique across the current model. Instead, <group> elements that
include <relationship ref> elements that share the same name attribute value form are
parts of a single hierarchy.]

4. Proper use of the name attribute

� A name attribute may not be defined on a <relationship ref> element with a relationship
attribute value of "is encapsulated by".

[A model may define only a single, unnamed encapsulation hierarchy.]

6.4.3 The <component ref> element in <group> elements

1. Allowed use of the <component ref> element within a <group> element

� A <component ref> element must contain only the following elements, which may appear
in any order:

– metadata framework elements, as described in Section 86.
� A <component ref> element within a <group> element must define a component at-

tribute and a role attribute.

2. Proper use of the <component ref> element in <group> elements

� Two <group> elements that contain<relationship ref> elements with identical relationship
attribute values and undefined name attributes may not reference the same major component.

[A single level of a hierarchy must only be defined with a single <group> element. It would
be much more difficult to assemble a hierarchy from a CellML document if a single level of the
hierarchy could be shared among multiple <group> elements.]

� Two <group> elements that contain<relationship ref> elements with identical relationship
and name attribute values may not reference the same major component.

[This rule extends the previous rule to include named hierarchies.]
� A component must not be referenced as a minor component more than once in a single grouping

hierarchy. All <component ref> elements with a common component attribute value and
a role attribute value of minor must be in different hierarchies.

[A grouping hierarchy must not be circular.]

3. Allowed values of the component attribute

5http://www.cellml.org/public/specification/20010302/cellml specification.html#sec fundamentals identifiers
6http://www.cellml.org/public/specification/20010302/cellml specification.html#sec metadata

http://www.cellml.org/public/specification/20010302/grouping.pdf 9

� The value of the component attribute must equal the value of the name attribute of a <component>
element contained within the current <model> element.

� The value of the component attribute on a <component ref> element must be unique
across all <component ref> elements within the parent <group> element.

[A component may only appear once within a group.]

4. Allowed values of the role attribute

� The value of the role attribute on a <component ref> element in a <group> element
must be either "major" or "minor".

5. Proper use of the role attribute

� A <group> element that contains a <relationship ref> element with a relationship
attribute of "is encapsulated by" or "is contained in" must contain exactly one
<component ref> element with a role attribute value of "major" and at least one <component ref>
element with a role attribute value of "minor".

[Groups defining an encapsulation or containment relationship must have exactly one dominant
component and at least one minor component.]

6.5 Rules for Processor Behaviour

6.5.1 Allowing multiple grouping hierarchies in a single model

A given model may define multiple geometric containment hierarchies, but may only define one logical
encapsulation hierarchy.

A grouping hierarchy is built up from multiple <group> elements based on the value of the name at-
tribute of the <relationship ref> elements. All <group> elements that contain <relationship ref>
elements that share the same relationship and name attribute values are considered to form a single
grouping hierarchy. All <group> elements that contain <relationship ref> elements that share the
same relationship attribute value and do not define name attributes are also considered to form a
single grouping hierarchy.

If, after the groups that make up a single hierarchy are assembled, the resulting hierarchy is discontinu-
ous, it may be convenient to assume that any components that are not already children of other components
are children of a single imaginary component. The imaginary component has no properties in the model.
Its sole purpose is to make it easier to check that the hierarchy has no circular relationships between com-
ponents.

6.5.2 Groups must not imply mathematical information

Modellers are explicitly forbidden from using CellML groups to add mathematical information to the model.
Modellers may not define their own types of relationships that imply mathematics.

6.5.3 Groups should not imply metadata information

Modellers should not use CellML groups to associate properties or classification information with sets of
components. The metadata functionality is the proper method for making such associations. This increases
the chance of that information being used by a range of CellML processing software.

E-mail questions, criticism, submissions or info to info@cellml.org
Input document last modified : Sat Mar 03 12:20:00 NZDT 2001

