
http://www.cellml.org/public/specification/20010302/fundamentals.pdf 1

CellML Specification

Draft — 2 March 2001

2 Fundamentals

2.1 Introduction

The fundamentals section of the CellML specification introduces some concepts that are used throughout
the entire language, and defines rules that are referenced in all or many of the other parts of the specification.
These include the definition of names in CellML and recommended practice for the use of namespaces in
CellML.

2.2 Basic Structure

2.2.1 Definition of a valid CellML identifier

The most common use of a CellML identifier is the name attribute required on many basic elements in
CellML. The value of this attribute can be used to reference that element from elsewhere in the model
definition or from another model definition altogether. An object’s name can generally be thought of as a
unique identifier for that object. Although the XML specification defines a mechanism for specifying that
the value of an attribute is unique across an entire document (with the ID attribute type), we choose not to
make use of that functionality because an object’s name need only be unique across its own class of objects.

The generation of computer code for running simulations is one of the target applications for CellML.
The value of an object’s name attribute is intended to be a suitable name for the same object when it
is represented in computer code. For this reason, CellML identifiers must consist of only alphanumeric
characters and the underscore character (“ ”) and are subject to some additional constraints outlined below.
These names will generally not be the most effective way of identifying the object to humans working with
CellML models, as it is not possible to include whitespace or formatting. More human readable names can
be defined and associated with CellML objects using the metadata functionality introduced in Section 81 .

The XML specification is based on the Unicode standard, which defines a scheme for 16 bit character
encoding. Thus it is possible to include, for instance, Japanese characters in a valid XML document. In
the interests of making the code generation process as convenient as possible for those using mainstream
programming languages, CellML identifiers are subject to the following constraints:

� An identifier must consist only of alphanumeric characters from the US-ASCII character set and
underscore characters,

� An identifier must start with a letter or underscore,
� If an identifier starts with an underscore, then the second character must be a letter.

Convenient code generation is also the reason why colons, periods, and hyphens may not appear in
CellML identifier. CellML identifiers are case sensitive: a variable with an identifier of ABC is different
from a variable with an identifier of abc.

The specification of a valid CellML identifier is identical to the definition of a valid object name in
SBML2. This should simplify the process of translating model definitions between the two languages.

1http://www.cellml.org/public/specification/20010302/cellml specification.html#sec metadata
2http://www.cds.caltech.edu/erato/

http://www.cellml.org/public/specification/20010302/fundamentals.pdf 2

2.2.2 Namespaces in CellML

Namespaces in XML3 is a companion specification to the main XML specification. It provides a facility for
associating the elements and/or attributes in all or part of a document with a particular schema, as indicated
by a Uniform Resource Identifier4 (URI). The key aspect of the URI is that it is unique. The value of the
URI need not have anything to do with the XML document that uses it, although typically it would be a
good location for the XML Schema or DTD that defines the rules for the document type. The URI may be
mapped to a prefix, which may then be used in front of element and attribute names, separated by a colon.
If not mapped to a prefix, the URI sets the default schema for the current element and all of its children.

The CellML specification defines a small number of elements and attributes and a namespace with which
they must be associated. Associating CellML elements and attributes with the CellML namespace allows
them to be differentiated from elements and attributes from other vocabularies with which CellML syntax
might be combined in a CellML document. For instance, CellML makes use of the MathML vocabulary for
the definition of equations, and all MathML elements must be placed in the MathML namespace in order
for CellML processing software to recognise those elements. Applications that store their own proprietary
data within a CellML document must define their own namespaces, and associate their own elements and
attributes with those namespaces, as discussed in Section 2.2.3.

The scope of CellML is specifically limited to the definition of model structure. The CellML namespace
includes all elements and attributes that define the structure of a model. All other information that may be
included in a CellML document, such as mathematics and metadata, is included using other namespaces.
Metadata is placed in a variety of namespaces, as described in Section 85. The MathML namespace is
given special importance, because content in this namespace is considered as fundamental as content in the
CellML namespace. An empty CellML element may not contain content in either the CellML or MathML
namespace, although it may contain content in other namespaces, including the metadata namespaces de-
fined in this specification.

Table 1 defines all of the namespaces used in the rules defined in this specification. The first three
namespaces are in the cellml.org domain, and are associated with the core model structure elements, some
custom metadata elements, and an XML serialization of the Object Management Group’s bibliographic
query service6 (BQS) data model created for storing citations in CellML. The MathML and RDF names-
paces are defined in standards administered by the World Wide Web Consortium. Finally, the Dublin Core
and Dublin Core Qualifiers namespaces reference standards for metadata specification administered by the
Dublin Core7 organisation.

Table 1 also gives the recommended prefix to be mapped to each namespace declaration for use in
CellML documents. It is recommended that when a CellML element such as <model> is the root element
of a document, CellML be declared as the default namespace for the document and also be explicitly mapped
to the cellml prefix. This simplifies the association of elements and attributes with the CellML namespace
in regions of the document where the default namespace is not the CellML namespace. For instance, the
MathML elements used to define equations are typically placed inside a <math> element that changes the
default namespace to the MathML namespace. A cellml:units attribute in the CellML namespace can
then be added to each of MathML’s <cn> elements without having to redeclare the CellML namespace
every time it is used.

3http://www.w3.org/TR/1999/REC-xml-names-19990114/
4http://www.ietf.org/rfc/rfc2396.txt
5http://www.cellml.org/public/specification/20010302/cellml specification.html#sec metadata
6http://www.omg.org/lsr/
7http://dublincore.org/

http://www.cellml.org/public/specification/20010302/fundamentals.pdf 3

Namespace Name Namespace URI Preferred Prefix
CellML http://www.cellml.org/2001/03/cellml cellml
CellML Metadata http://www.cellml.org/2001/03/metadata cmeta
CellML BQS http://www.cellml.org/2001/03/bqs bqs
MathML http://www.w3.org/1998/Math/MathML mathml
RDF http://www.w3c.org/1999/02/22-rdf-syntax-ns# rdf
Dublin Core http://purl.org/dc/elements/1.0 dc
Dublin Core Qualifiers http://purl.org/dc/qualifiers/1.0 dcq

TABLE 1: The CellML specification defines the expected behaviour of CellML processing software for XML
elements and attributes that are in these namespaces. Applications may not place their own elements and

attributes in these namespaces. See text for more details.

2.2.3 Extending CellML documents

CellML processing software may store information not covered by the CellML specification in a CellML
document by defining its own elements and attributes and placing them in a namespace other than one of
those defined in Table 1. (This specification only defines the content models of elements in the namespaces
in Table 1 with respect to other elements in those namespaces.) Elements and attributes in extension names-
paces may appear anywhere in a CellML document, as long as the result is well-formed XML. Because the
CellML specification is only concerned with content in the CellML or MathML namespaces, elements in
extension namespaces may even appear inside elements defined by the CellML specification to be empty.

It is hoped that CellML processing applications will respect the extension elements and attributes of
other applications. If a model is created in application A, which adds its own extension elements, and is
subsequently edited in application B, it would be polite if application B included application A’s extension
elements in its output, even if these extension elements are now invalid. Applications will need to validate
their own extension data if a CellML document is read in from a non-trusted location.

The namespace extension mechanism provides a convenient way to associate a small amount of application-
specific information with a model defined in CellML. However, it is recommended that applications needing
to store large amounts of information, such as rendering or simulation information, do so in a separate docu-
ment. This will make CellML documents easier to exchange, and will prevent the loss of application-specific
information if the model is read into another application.

2.3 Examples

Figure 1 contains some example CellML elements, each of which defines a name attribute. The values of
the name attribute on the first three elements are valid CellML identifiers. The values of the name attribute
on the last two elements are invalid identifiers.

Figure 2 contains portions of a typical CellML document that demonstrate the recommended use of
namespaces. The root element sets the default namespace to the CellML namespace and also explicitly
maps the CellML namespace to the cellml prefix. The <math> element that encloses a set of equations
inside a component element resets the default namespace to the MathML namespace. The units attribute
on the <cn> element (which is in the MathML namespace) is placed in the CellML namespace by using
the previously-defined cellml prefix.

Figure 3 demonstrates how software can embed its own information inside a valid CellML document
using XML namespaces. The <model> element sets the default namespace to the CellML namespace,
and maps the app prefix to an extension namespace (i.e., one not defined in Table 1). The app prefix is

http://www.cellml.org/public/specification/20010302/fundamentals.pdf 4

<!--
The following elements have name attributes with valid values.

-->

<component name="my_favorite_component" />

<variable name="_ca2_conc" units="millimolar" />

<model name="model1345" />

<!--
The following elements have name attributes with invalid values.
Names may not start with numbers or contain colons.

-->

<component name="123component" />

<component name="my_model:my_component" />

FIGURE 1: XML elements defining name attributes. Valid and invalid CellML identifiers are shown, as noted
in the comments.

then used to define an <app:component rendering information> element and two attributes on
a <component> element.

2.4 Rules for CellML Documents

2.4.1 Valid CellML identifiers
� The following is definition of a valid CellML identifier using Backus-Naur notation:

letter ::= ’a’...’z’,’A’...’Z’
digit ::= ’0’...’9’
name ::= {’_’} letter {letter | ’_’ | digit }

[A valid CellML name must start with a letter or underscore (“ ”). If a name starts with an underscore,
the next character must be a letter. A name may continue with any alphanumeric character or an
underscore. Backus-Naur notation is described in Naur, P. (1960) “Revised Report on the Algorithmic
Language ALGOL 60”, Communications of the ACM, 3(5):299-314.]

2.4.2 Extension namespaces

� Any element not in one of the namespaces defined in Table 1 is an extension element. Any attribute
not in one of the namespaces defined in Table 1 is an extension attribute. Attributes without an explicit
namespace declaration are assumed to be in the same namespace as their parent element. Although not
explicitly stated, a document author may add elements and attributes in other namespaces anywhere
in a CellML document without affecting its validity.

http://www.cellml.org/public/specification/20010302/fundamentals.pdf 5

<model
name="simple_electrophysiological_model"
xmlns="http://www.cellml.org/2001/03/cellml"
xmlns:cellml="http://www.cellml.org/2001/03/cellml">

...

<component name="extra_cellular_space">
...
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><eq />

<apply><diff />
<bvar><ci> time </ci></bvar>
<ci> Na </ci>

</apply>
<apply><times />
<cn cellml:units="dimensionless"> -1.0 </cn>
<ci> I Na </ci>

</apply>
</apply>
...

</math>
</component>

...

</model>

FIGURE 2: A CellML fragment demonstrating the recommended use of namespaces in a CellML document.
This fragment is taken from the simple electro-physiological model example on the CellML website.

http://www.cellml.org/public/specification/20010302/fundamentals.pdf 6

<model
name="cellml_model_with_extensions"
xmlns="http://www.cellml.org/2001/03/cellml"
xmlns:app="http://www.software.com/cellml_processor">

<app:component_rendering_information>
cell : blue
membrane : yellow
channel : red

</app:component_rendering_information>

<component
name="cell"
app:component_type="cell"
app:render_corners="100, 100, 400, 400" />

</model>

FIGURE 3: A CellML document demonstrating the use of XML namespaces to embed application specific
data inside a CellML document. The extension namespace was invented for demonstration purposes only.

2.4.3 Proper use of the CellML namespace
� Only elements and attributes defined in the CellML specification may be placed in the CellML names-

pace.

[Documents containing unknown elements or attributes in the CellML namespace are invalid CellML
documents. Rules regarding the use of elements in the other namespaces defined in Table 1 are given
in the appropriate sections.]

2.5 Rules for Processor Behaviour

2.5.1 Treatment of CellML identifiers
� CellML identifiers must be handled in a case-sensitive manner.

[Two CellML elements of the same type may be defined with identifiers of A and a. Processing
software is expected to match the identifiers in a case-sensitive manner when those elements are
referenced at other places in the document.]

2.5.2 Treatment of extension namespaces
� CellML processing software is free to do whatever it wishes when it encounters elements and at-

tributes that are not in one of the namespaces defined in Table 1.

[If the namespace is unrecognised, then software should probably alert the user to its presence. Polite
software should attempt to store non-CellML data, so that it can write it out again when it exports
the document. Software should validate its own non-CellML data carefully when reading documents
from a non-trusted location.]

E-mail questions, criticism, submissions or info to info@cellml.org
Input document last modified : Sat Mar 03 12:20:00 NZDT 2001

