CellML API

Matt Halstead

CellML API

Table of Contents

CellIMLL API 1
Basic Building Blocks 2
CElIML AUITDULE STEIINE ¢ veeueeeuteenieeiieeiteette ettt ettt e st e st e eatesaeeebeesbtesheesbeesaeesbeesbeesbeesbeesaeesneenseenns 2
L8023 SRR 2
(01100 B @] o) <ot AP U USSP 2
NAmMEd CEIMEIL OBJEOL...euvtiueeeiieeiieeiie ettt ettt e st e et e et esae e s bt e sbeesheesbeesaeesbeesbeesbeesbeesueesneenseennes 3
TS 1R 0] 1 @ o) <Y oi USROS USSP 3
CelIML Constructs 4
1Y (06 1= TSRSt 4
(107111 070) 111 1| SO U RS SRP 5
0010 TP U S STRP 5
10010) AR R USRS 5
R0 oTe ual @eT111010)11S) 11 ST R TSRS 6
IIPDOTE TUTIES. ¢ttt ettt ettt ettt ettt et ettt ettt e bt s bt e s he e s htesueesbeesb e e sbeesheesheeebeeebeeebeeabeesbeesaeenbeenneenns 6
UNIE AEFTNTEIONIS. 1.eeeeeieeeeeeeeeeeeetttee e e eee e e e e e et e e e e e e eeeaeeeeeeeeeeataeeeeeeeeesssaseeeeeeseassaseeeesssanssesneeeessannnnes 6
UTIIES. ettt e e ettt e e e ettt e e e e e eaaaa e e e eeeee e saaaeeeeeeeaaasaaaeeeeeeeantaaeeeeeeeaanaaaeeeeeeeeanarateeeeeeeannanes 6
L0 PPN 7

1Y 2T SRRSOt 7
VATIADIES. ...ttt ettt e e e et e e e e e et e e e e e e ee it aa et e e e e ee e a——eeeeee e e e a—teeeeeeeanraarreeeesannaaes 7
AT 1) (S D110 o 211~ PRSPPIt 7

AT 1) (PRSP RRRRRRRRNt 7
(0101011 010) 1151 110 A4S (51 1) 1141 USSP 8
CompPonent REE.......ooiii ettt ettt st ae 8
Relationship RETottt sttt be et sae e st e b e eaeeas 8
GIOUD. ettt ettt ettt ettt ettt ettt e b et e bt e e s et e e e ab e e e a bt e eabeeea bt e e bt e e bt e e bt e e eab e e sab e e ea b et eabeeebaeenbteenanes 9
(@00 111 1Te1 5 T0) 1 USRSt 9
MAD COMPOMEIILS - ceuvveeneteeiteeniteeeitee et e ettt ettt ettt esbteesabeesabeesabeeeabee ettt e bbeebbeenbteesabeesabeesabeesabeeenbeeenbeeenanes 9
Y FT oY 21 o) (< USROS USSP 9
e 5 (o) 1 - PR SRRRRRRRNt 9
= Ted 5 (o) YRR 10
AT 1) (S0 =5 SO 10
Reactant Variable REf..........ooooiiiiiiiiiiieeeeeee et e e e e e e e e e e e e e e ennaaes 10
Product Variable REf.........ovviiiiiieiieee ettt e e e e e e e e aaae e e e e e ennaaes 10
Rate Variable REL ...ttt e e e e e e e e e e e eeaaaaeeeeeeennaaes 10
ROIE. ..ottt e e e e e e e e e e ———t e e e e e e ———taeeeeaa———reeeeeaanaaes 10
e 7211 1 o) (SRR RRR SRR 10
PrOAUCE ROIE ...ttt e e e et e e e e e e et eeeeeeeeabaaeeeeessennsaaneeeeesennnnans 10
LTl S0 (SRR 11

R B S 1 T=1 26 £ TSR 11
Collections 12
Collection of CellMI. AIIDULE STIMES. . c.veeveeteetieieeieeite et ettt ettt et e be et e et e e bt e teebeebeebeeseeseas 12
Collection Of CEIIMIL ODJECLS ...uvteteeieeteeteete ettt et e bt et e bt e bt e te e be e bt ebeebeebeeteebeenbeenbeenseensean 12
Collection Of Named CelIMI ODBJECLS. ...cuveeurieiieiieieeieete ettt ettt ettt ettt et e e bt ebe e bt ebeebeenbeeneeas 12
Collection Of EXtension ODJECES.ueeueeueeiieiieiieteete ettt ettt et et et e bt e bt ebe e bt e teebeebeebeenseensean 13

CellML API

Table of Contents

Collections
Collection Of COMPOMENLS.eeveeurieteeteeie et et et et et eteebeesbeebeebeeteebeebeenbeenbeenbeenteenbeenbeanseanseansean 13
COlleCtion OF TMIPOLES.....eeuveeuieeitettete ettt ettt ettt et ettt et et et e e bt eabe e bt eabeenbe e beenteenbeenbeenseenseansean 13
(O10) 1 (ST a0) M O) AT 5 1) (=R 13
(OF0) 1 (STeTaTe) o1 O) L 01V TR 13
(OF0) 1 (STe1aTe) 11O) L 01V L SRR 13
(OF0) 1 (STeTaTe) oM O) LY P21 s WO 13
Collection Of CONMECLIONS. ...ccuvvvrreeeeeeeeeieeeeeeeeeeeteeeeeeeeeeteeeeeeesesetareeeeeseessseeeeeeessassaseeeeessasssreeesessnans 13
COllECHION OF GIOUDS -t euteeuteeuteeute et et et et et et eateeateete e bt e bt e bt e bt enteenbe e bt enbeenbeenbeenteenbeenbeenseenseansean 13
Collection Of Relationship RETS......ccueiiuiiiiiiieiieeeeeeee ettt 14
Collection Of COMPONENTRETSeoiiiiiiiiiie ettt ettt e e eeeas 14
Collection Of MapVariabIescccveeueeieiieeiieie ettt ettt ettt et ettt e e e bt te e bt ebeebeenbeeneeas 14
Collection Of VariableRef ODJECIS ... ceueeueeiietieieee ettt ettt eeeas 14
Collection Of ROIE ODBJECESeeuveetieieeie ettt ettt ettt ettt et e be e bt e bt e be e bt e beebeebeenbeenbeensean 14
Model Management APIL 15
IMOAEL IMIAMAZEE - .- e eueeeuteeute ettt ettt ettt et ettt et e e et e et e enbeenbeembeenteenbeeabeenbeembeenbeenteenbeenbeanbeanbeensean 15
IMOAEL IVIAD ...ttt et ettt ettt et e et e e a bt e bt et e en bt e bt e bt e bt e bt e bt e bt e be e bt enbe e beentean 15
TS 1 F 1<) RO TRRRRRRRRRN 15
INAIIIESDACES -+t euveuteeuteeuteeuteeute et et eateeateeateeabeeabeea bt eateenteeateeabeenbeembeemseem bt embeeabeembeenbeenbeenteenbeenbeenbeenbeentean 15
NAMESPACE PIOEIX ...veeuteeuiieitetiee ettt ettt ettt et ettt et e et e e bt et e enbeeneean 16
INAMESPACE IMIAP. -ttt ettt ettt ettt ettt ettt et e et e e bt et e enbeeabeenbeen bt embeenbeenbeenbe e beenbeenbeentean 16
Factories 17
CElIML AUIIDULE IMIAD. .- enveeutteie ettt ettt ettt ettt ettt et et e et e be e bt e bt eabeenbe e beenteenbeenbeenbeenseensean 17
COIIML ODJECE FACTOTY: -+t uteeuteeuteeuteeute et et et ettt et et e bt e bt e bt e bt et e e bt enbeeabeeabeenbeenbeenteenbeenbeenseenseensean 17
Generic factory NANAIEEoouiiieeie ettt ettt an 17
SPECIIC FACLOTIES. ..ttt et ettt ettt et ettt ettt ettt et e bt eateeat e eabeeateeabeembeeneeeneeeneeenteens 17
Exceptions 18
Utilities. 19
General Notes 20
Resolving IMPOTTEd STITCTUIES. .. eouveeureeuteeieeteete et ete et et ebe et et ebe e e ebe e bt eabeenbeebeenteenbeenbeenbeenseensean 20
UDIQUE DAIMIGS -+ veeuteeuteenteeuteeuteeuteesteeateeateeateenseeaseeaseemteeaseaaseemseemseenseenbeanseenseenseenseenbeenbeenseanseenseensean 20
Representation of iMpPOrted ODJECESeevietieiieiieie ettt 20
) FIR 720 A F215 (o) 1 WO TR 20
IMPLCIE SEIUCKUTES. . .veeuveeuteeite ettt ettt ettt ettt et et e bt et e bt e bt et e et e enbeenbeenbeenbeenseeneean 20
Modifying impOrted SHTUCTULES. ... eeveeuteeteeteeteeteete et et et eteeteebeebeesbeebeenbeebeebeebeeseenseas 20
Handling RALottt ettt et e b et et et e e ebe e be e bt enbeennean 21
Glossary., 22
Toda 23

CellML API

Date: 2005-02-20
Author: Matt Halstead

Contact: matt.halstead @auckland.ac.nz
The minimum set of interfaces for the CellML 1.1 API

The goal is to satisfy only those interfaces we think are necessary. It does not limit the interfaces. Anyone is
free to implement other interfaces and mix them in.

While there is some attempt to provide some validation comments, this needs a lot more attention.

CellML API

mailto:matt.halstead@auckland.ac.nz

Basic Building Blocks
CellML Attribute String

This holds attribute values for the XML attributes of elements in serialised CellML. Character data in XML
can be any Unicode character; the sequence of characters must conform to the rules of XML character data
which define escaping of reserved characters etc(http:/www.w3.org/TR/REC—xml/#syntax).

CellMLAttributeString

Unicode value

URI

URIs need to conform to RFC2396 (http://rfc.net/rfc2396.html)

URI

Boolean validate()

CellML Object

A CellMLObject represents CelIML/XML elements. The validation method is something that all of these
objects need to define, so consider this one virtual. Since there are no interfaces defined for attributes of
CelIML/XML elements, the validation methods of the CellML Object that own then needs to check
constraints on these.

See Handling Rdf for a discussion on how we want to handle it in the APL

CellMLObject

the cellml version this model conforms to
CellMLAttributeString cellml_version

A cmeta id may be defined on any CellML element
CellMLAttributeString cmeta_id

rdf metadata associated with object. Note: the object must have
a cemta:id for any RDF to be able to refer to it.
RDF rdf

extension objects
CollectionOfExtensionObjects extension_objects

Validate. Some validation only makes sense once entire model is loaded
Boolean validate()

the generic return type of parent_objects is given for those
static typing kind of languages. While it is very useful for
implementation, I am not so clear on external use cases for
this method. CellMLObject parent_object ()

R

return the model object this CellML object belongs to
Model model_object ()

Basic Building Blocks

http://www.w3.org/TR/REC-xml/#syntax
http://rfc.net/rfc2396.html

CellML API

Named CellML Object

Some CellML constructs require a name which is unique within a particular scope. This uniqueness should be
checked in the validation of those constructs. We need to resolve the issue of uniqueness across imported

components(see Unique names).
NamedCellMLObject : CellMLObject

CellMLAttributeString name

Extension Object

An extension object is a user defined representation of data in an extension namespace. In CellML/XML, a
user is free to add other data elements that do not conform to CellML names or rules, so long as they are
defined in another namespace. It is up to the application developer to handle the creation of extension objects,
which usually means interacting with the XML parser to trigger the correct methods.

ExtensionObject

Named CellML Object

CellML Constructs

Represents a CellML Model. For a discussion on the visibility of imported structures see Resolving imported
structures.

Validation consists of calling validation on:

® units

® components
® connections
® groups

® imports

Model

Model : NamedCellMLObject

interface to the manager for loading and keeping track of models.
ModelManager model_manager

CollectionOfGroups groups
CollectionOfImports imports
NamespaceMap namespaces

models should really set an 'xml:base' attribute in the
model element as we need to be able to unambiguously and
uniquely reference a model independent of its location. If
this is not set, the base_uri could be set to the URI used
to obtain it.

URI base_uri

4 o H 3 S

model units. If any imports have been fully instantiated,
then it includes those units objects as well.
CollectionOfUnits units ()

returns names of all units visible at the model level.

I.e. this does not include units declared in components, but
will include units declared in imports. This interface has
the benefit of always including imported units, whereas the
units () interface does not.
CollectionOfCellMLAttributeString units_names ()

4 o o 3 S

returns all components with interface 'Component' in the
model. TIf imports have been fully instantiated then it
includes these too.

CollectionOfComponents components ()

returns names of all components declared in the model,
including those declared in the import structures.
CollectionOfCellMLAttributeString component_names ()

model connections. If any imports have been fully
instantiated, then it includes connections relevant to those
also.

CollectionOfConnections connections ()

CellML Constructs

CellML API

the following also searches user-defined relationships.
CollectionOfGroups find_groups_with_relation_ref name (CellMLAttributeString name)

#This fully instantiates the import definitions
fully_instantiate_imports ()

return a flattened model, i.e. all imported component trees are
promoted to model level and import objects are removed.
Model generate_flattened_model ()

Component

Represents the component object
Validation checks that

e all variables are valid
e all units are valid
e all math is valid — (what does that mean?)

Component : NamedCellMLObject

CollectionOfVariables collection_of_variables
CollectionOfUnits collection_of_units
CollectionOfMath collection_of_math

returns a collection of connections that this component participates in
CollectionOfConnections connections ()

both of the following methods return NULL if the component does not
participate in an encapsulation hierarchy

Component encapsulation_parent ()

CollectionOfComponents encapsulation_children ()

both of the following methods return NULL if the component does not
participate in a containment hierarchy

Component containment_parent ()

CollectionOfComponents containment_children ()

Imports

This section describes the interfaces to imported structures. For an explanation of full instantiation, see
Representation of imported objects.

Import

Import : CellMLObject

The value of the href attribute must be a URI reference as defined in
[IETF RFC 2396] - see http://www.w3.org/TR/xlink/#link-locators

URI xlink_href

CollectionOfImportComponents components

CollectionOfImportUnits units

Model

CellML API

the following represents the connections maintained in the import.
CollectionOfConnections imported_connections

fully instantiate the import.
full_instantiate ()
Boolean is_fully_instantiated()

Import Component

This is an extension of interface Component for use in Import constructs. This hooks the methods of
Component and where methods require it, checks that the imported component has been instantiated.

The name attribute of the component declaration is available through the name interface of Component.
Validation checks that

¢ the referenced component actually exists in the model referenced
by the import.

ImportComponent : Component
CellMLAttributeString component_ref

Boolean is_fully_instantiated()
fully_instantiate ()

Import Units

This is an extension of interface Units for use in Import constructs. This hooks the methods of Units and
where methods require it, checks that the imported units has been instantiated.

The name attribute of the units declaration is available through the name interface of Units.
Validation checks that

¢ the referenced units actually exists in the model referenced by the import.

ImportUnits : Units
CellMLAttributeString units_ref

Boolean is_fully_instantiated()
fully_instantiate ()

Unit definitions

Units

Units : NamedCellMLObiject

the following is set to true if this is a new type of base units.
Boolean is_base_units

CollectionOfUnit units

Import

CellML API
Unit
Unit : CellMLObject

int prefix

float multiplier

float offset

float exponent
CellMLAttributeString units

Maths

The Math elements have two faces:

1. they are objects in CellML that hold math equations, but which the rest of the CellML objects do not
reference, or need to interpret.

2. they are mathematical definitions that use CelIML objects, such as units of variables referenced, and
require a set of interfaces so that developers who need to access the math can so. MathElement is a
placeholder for such a set of interfaces. They are not defined as part of the CellML API specification.

One note from the CelIML 1.1 Specification w.r.t the validation of math in the CellML context. On MathML
elements, the mathml:id attribute must be used. A cmeta:id attribute must specifically not be added to

MathML elements because a given element may only contain one attribute of type ID.

In the following, MathElement is a used defined interface to the math objects declared in the MathML.

Math : MathElement

Variables

Variable Interface

Represents the value of public_interface or private_interface Validation checks it is one of (in,out,none)

VariableInterface
CellMLAttributeString value # or enumerated type

the following test the states of the interface
Boolean is_in ()

Boolean is_out ()

Boolean is_none ()

validate ()

Variable
Represents the variable object.
Validation checks that

e interfaces have allowed values

Unit

CellML API

e interfaces are connected in correct ways according to interface rules.

® units name value refers to a visible units object in the model

® units in connections have common bases.

e initial_value is numeric or the name of a variable in the current component.

¢ at the model level we may, after construction, validate that all 'in' variables propagate back to a single
source and that an initial_value, if set for this variable chain, is set at the source location and nowhere
else in the model.

Variable : NamedCellMLObject
we leave initial_value as a string since it can be a
numerical value or the name of variable from which to get
its value.
CellMLAttributeString initial_value
CellMLAttributeString unit_name
VariableInterface public_interface

VariableInterface private_interface

get a collection of variables connected to
CollectionOfVariables connected_variables ()

trace back to the source for this variable by going back through

the chain of variable connections leading to it.
Variable find_source_variable ()

Component References

Component Ref

ComponentRef : CellMLObject

the name of the component being referenced
CellMLAttributeString component_name

child component ref objects
CollectionOfGroupComponentRefs component_refs

get parent component ref, returns NULL if this is a top level
component_ref

GroupComponentRef parent_component_ref ()

get parent group
Group parent_group ()

Relationship Ref

Validation checks that if a non standard relationship is set, that the namespace of this object is not the cellml
one.

RelationshipRef : CellMLObject
CellMLAttributeString name # optional, so validation does not need to check for it.

CellMLAttributeString relationship
URI raltionship_namespace

Variable

CellML API

Group

Group

CollectionOfRelationshipRefs relationship_refs
CollectionOfComponentRefs component_refs

Component get_parent_component_name (component name)
Component get_children_component_names (component name)

the following test to see if the standard cellml relationships
of encapsulation and containment are defined for the group
Boolean is_cellml_encapsulation ()

Boolean is_cellml_containment ()

Connection

Connection : CellMLObiject

MapComponents map_components
CollectionOfMapVariables map_variables

Map Components

MapComponents : CellMLObject

CellMLAttributeString component_1_name
CellMLAttributeString component_2_name

the following get references to the components component_1
and component_2 refer to. If imports have not been fully
instantiated these should return an error.

to an imported component.

Component get_component_1 ()

Component get_component_2 ()

R

Map Variables

MapVariables : CellMLObject

CellMLAttributeString variable_1_name
CellMLAttributeString variable_2_name

the following get references to the variables
variable_1_name and variable_2_name refer to. If the model
has not been instantiated these should return an error when
referring to a variable of an imported component

Variable get_variable_1 ()

Variable get_variable_2 ()

R

Reactions

Group

CellML API
Reaction

Reaction : CellMLObiject

CollectionOfReactantVariableRefObjects reactants
CollectionOfProductVariableRefObjects products
RateVariableRef rate

Variable Ref

VariableRef : CellMLObject

variable

Reactant Variable Ref

ReactantVariableRef : VariableRef

variable
ReactantRole role

Product Variable Ref

ProductVariableRef : VariableRef

variable
ProductRole role

Rate Variable Ref

RateVariableRef : VariableRef

variable
RateRole role

Role

Role : CellMLObject

direction
delta variable
stoichiometry

Reactant Role

ReactantRole : Role

role = "reactant"

Product Role

ProductRole : Role

role = "product"

Reaction

10

CellML API

Rate Role

RateRole : Role

role = "rate"
CollectionOfMath maths

RDF metadata

The metadata is stored in RDF elements in the rdf namespace. RDF is a user defined interface to RDF models.
See also Handling Rdf.

RDF

need to check the namespace is a valid RDF namespace.

Rate Role 11

Collections
Collection of CellML Attribute Strings

CollectionOfCellMLAttributeStrings

Collection Of CellML Objects

CollectionOfCellMLObjects

#cardinality of collection s
length ()

#test x for membership in s
contains (CellMLObject x)

add x to collection
add (CellMLObject x)

remove x from collection
remove (CellMLObject x)

replace x with y
replace (CellMLObject x,CellMLObject vy)

clear ()
CollectionOfCellMLObjectsIterator begin ()
CollectionOfCellMLObjectsIterator end()

CollectionOfCellMLObjectsIterator

return next item in collection. Different implementations
will have different methods for handling the stop/end

condition.

next ()

Collection Of Named CellML Objects

CollectionOfNamedCellMLObjects : CollectionOfCellMLObjects

Callable as a dictionary like structure
mmonw

get named object
get (CellMLAttributeString name)

add x to collection
add (NamedCellMLObject x)

replace x with y
replace (NamedCellMLObject x,NamedCellMLObject vy)

remove x from collection
remove (NamedCellMLObject x)

remove object named x from collection

Collections

12

CellML API

remove_by_name (CellMLAttributeString name)

Collection Of Extension Objects

CollectionOfExtensionObjects

Collection Of Models

CollectionOfModels : CollectionOfNamedCellMLObjects

Collection Of Components

CollectionOfComponents : CollectionOfNamedCellMLObjects

Collection Of Imports

CollectionOfImports : CollectionOfCellMLObjects

Collection Of Variables

CollectionOfVariables : CollectionOfNamedCellMLObjects

Collection Of Units

CollectionOfUnits : CollectionOfNamedCellMLObjects

Collection Of Unit

Collections of Unit occur in Units objects.

CollectionOfUnit : CollectionOfCellMLObjects

Collection Of Math

CollectionOfMath : CollectionOfCellMLObjects

Collection Of Connections

CollectionOfConnections : CollectionOfCellMLObjects

retrieve a subset connections that uses a component with component
name.
CollectionOfConnections connection by component name

Collection Of Groups

CollectionOfGroups : CollectionOfCellMLObjects

Collection Of Named CellML Objects

13

CellML API

returns a subset of the collection that match a relationship_ref
CollectionOfGroups groups of relationship_ref (CellMLAttributeString relationship_ref)

CollectionOfGroups groups_of_relationship_ref containment
CollectionOfGroups groups_of_relationship_ref_ _encapsulation

Collection Of Relationship Refs

CollectionOfRelationshipRefs : CollectionOfCellMLObjects

the following is different to the same feature in named collections
in that we can't assume all members have a name. It will return NULL
if a relationship_ref object is not present with the given name.

RelationshipRef get_relationship_ref by_name (CellMLAttributeString name)

Collection Of ComponentRefs

Don't think we need the following

CollectionOfComponentRefs : CollectionOfCellMLObjects

Collection Of MapVariables

CollectionOfMapVariables : CollectionOfCellMLObjects

Collection Of VariableRef Objects

CollectionOfVariableRefObjects : CollectionOfCellMLObjects

Collection Of Role Objects

CollectionOfRoleObjects : CollectionOfCellMLObjects

Collection Of Groups 14

Model Management API

This is a separate API from the CellML API, but is useful to describe here.

Model Manager

The Model Manager describes the interfaces required to load CellML from serialised CellML/XML and to
create CellML model representations in memory.

ModelManager
ModelMap models

create an empty model
Model create_empty_model ()

Model Map

A map to maintain a collection of models that have been loaded into memory.

ModelMap

one problem is that there is no guarantee of unique model
names. Do we raise an exception or instead use collections
for the return of methods based on name?

add_model (CellMLAttributeString model_name, URI model_uri,Model model)
remove_model_by_ name_and_uri (CellMLAttributeString model_name, URI model_uri)
remove_model_by_ name (CellMLAttributeString model_name)

remove_model_by_uri (URI model_uri)

remove_model (Model model)

Model get_model_by_name (CellMLAttributeString model_name)

Model get_model_by_uri (URI model_uri)

Model get_model_by_name_and_uri (CellMLAttributeString model_name, URI model_uri)

CollectionOfModels models

Serialiser

The serialisation of CellML object model to CellML/XML. If no namespace entry is found for a namespace
map, then a prefix will be automatically generated.

Serialiser

serialise (Model model, NameSpaceMap name_space_map)
Model create_model_from uri(uri of xml document)
Model create_model_from bytestream(bytestream of xml)

Namespaces

Model Management API

15

CellML API

Namespace Prefix

The string format of this needs to conform to the XML definition of namespace prefixes
(http://www.w3.org/TR/REC—xml—-names/#NT-NCName). Defining an interface for this is perhaps overkill
and could be left up to a more general validator to check these.

NamespacePrefix

Boolean validate()

Namespace Map

Holds prefix : URI pairs. At the moment we don't handle contexts, i.e. this is a general map that can be used
by a serialiser; it would be up to something else to handle specific contexts for various namespaces, e.g.
xmlns="http://www.w3.org/1998/Math/MathML" is only declared in the math elements and not the root
element. This is a matter of preferred serialisation, and it is not a rule that document structure, including
context specific namespace declaration, is maintained between de—serialising and serialising models.
However, a particular implementation may offer this.

NamespaceMap

set_namespace creates a new item if there is not one present that
already matches the prefix. namespace_prefixes are unique,

namespace_uris are not.

set_namespace (namespace_prefix, namespace_uri)

remove_namespace_by_prefix (NamespacePrefix namespace_prefix)
remove_namespaces_by_uri (URI namespace_uri)

URI get_namespace_uri (NamespacePrefix namespace_prefix)
NamespacePrefix get_namespace_prefix (URI namespace_uri)
CollectionOfNamespacePrefixes prefixes|()
CollectionOfNamespaceUris namespace_uris ()

clear ()

Namespace Prefix 16

http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/1998/Math/MathML

Factories

Factory are used to create the CellML objects. A factory is required for each element that can be defined in
the CellML namespace of CellML/XML serialisation. In addition to these, there should be factories that
handle the math and RDF elements which have their own namespaces. It is up to the implementation to decide
how to load the XML and call the factories.

CellML Attribute Map

This is a map to hold the names and values of attributes found in CelIML elements in the CellML/XML. The
most common namespace_uri will be the CelIML one.

CellMLAttributeMap

get_attribute_by_name (CellMLAttributeString attribute_name, URI namespace_uri)

CellML Object Factory

Generic factory handler

CellMLObjectFactory
create_cellml_object is the generic method called to create the
object type required. This is overridden by each factory.
Obviously the return type needs to be one that conforms to the
correct interface for the cellml object being created.

CellMLObject create_cellml_object (CellMLAttributeMap attribute_map)

Specific factories

ModelFactory : CellMLObjectFactory

Model create_cellml_object (CellMLAttributeMap attribute_map)
ComponentFactory

Component create_cellml_object (CellMLAttributeMap attribute_map)
ImportComponentFactory

ImportComponent create_cellml_object (CellMLAttributeMap attribute_map)
UnitsFactory

Units create_cellml_object (CellMLAttributeMap attribute_map)
UnitFactory

Unit create_cellml_object (CellMLAttributeMap attribute_map)

etc...

Factories 17

Exceptions

We need to think about exceptions more. It would seem more appropriate to use error objects that are returned
from various functions such as validation. This is because :

1. Many of these may require alternative action and continuation of execution proceeding from the point

of where a function was called that caused the error.
2. Some environments handle exceptions as return objects anyway.

Exceptions 18

Utilities
This space will be filled out soon. It is composed of utilities such as
® decomposing models into single component models that are reimported
e decomposing a model that has initial_values set into a generic model and a simulation instance model

¢ the handling of modifications to imported structures.
e etc...

Utilities 19

General Notes

Resolving imported structures

Unique names

While specific components are given local names in an import declaration, components hidden in their
subtrees are not. This leaves us with a potential for a name clash if these hidden components are to be
accessible by name. We have two options :

e these components are not visible to methods available for the model doing the import, i.e. there will
not be name clashes, and we cannot refer to them by name.
e these components are visible, but have a generated local name in the model doing the import.

The choice affects the scope of some methods defined on Model objects.

Representation of imported objects
Instantiation

Imported objects are declared using the import structures. These declarations are simple references to the
relevant structures in another model. In the simplest representation we need only provide interfaces to these
declarations. But it is also useful to build full representations of these structures so that the information they
contain can be used by a system operating on the model that imported them. We refer to these representations
as fully instantiated. It is important to understand that an imported component is not imported within the
context of an instantiated representation of the model from which it came from. Imports are not connecting
one model to another, but instead are using another model to serve as a template for structures that can be
used in the importing model.

Implicit structures

We have already introduced the problem of hidden imported components in the section on Unique names.
These components, hidden in the subtrees of declared components, are structures that become implicit
members of a model with imports. The connections between these components are also implicit structures that

should be made available through the API, since these form the only method for navigating through a subtree.

Units structures can also form trees through the units attribute of their unit children. It is useful to be able to
provide access to these objects also.

The interfaces in Imports and Model need to reflect this thinking.

Modifying imported structures

The declaration of imported structures can be modified, and this may or may not have implications on the
version or variant of a model (see here for a proposal on this as part of a model repository).

Components, connections, and units of fully instantiated imports are read only and cannot be modified. If a

user wants to modify these, then they are essentially modifying a structure that is declared in another model.
We could simply promote the object into the model level of the current model, but this would break the

General Notes 20

http://n2.bioeng5.bioeng.auckland.ac.nz/development/documentation/CellMLModelRepositories

CellML API

re—use philosophy of imports by making it simple for users to create many unrelated variations of an existing
structure. It would be better to force the creation of a new model that represents altered structures and that
relate to the original model these were imported from in a useful manner. A useful manner means one of the
following:

e directly imports that object and modifies it through standard CellML declarations; this may require
further decomposition of structures to open up parts that need changing. Note: it is important to
understand that the structure of CellML structures cannot be directly modified through declarative
syntax. If the structure is modified directly, for example, a variable is removed from a component,
then this constitutes a change that can only be labelled through variant attributes(see next point).

e forms a variant and adds the appropriate attribute that this model is a variant of the original model it
was imported from.

Handling Rdf

Every cellml object can have rdf defined. Rdf needs to be thought about some more — we have this problem of
RDF can be defined anywhere in the model, but that it really only defines information w.r.t particular named
objects that use the cmeta:id This RDF can go anywhere, should there be some rules for how the structure is
maintained or not? We cannot guarantee the same RDF serialisation if the RDF objects are held in an internal
RDF representation. If we went the way of only holding those objects relating to this object by RDF reference,
then we need a collection of RDF here, since there may be multiple RDF elements that describe attributes of
them. My recommendation would to be collect together all the RDF statements about the cmeta:id that is
attributed to this object and keep hold of that collection. The RDF/XML in the CellML/XML should be
structured this way if the person is concerned about some readable order to their RDF. We might want to give
options of all the RDF being serialised next to their objects or somewhere else. But that is up to the serialiser.

Modifying imported structures 21

Glossary

Instantiated object
This represents the creation of an instance of an object from a CellML declaration. The most common
form of an CelLML declaration is the CellML/XML syntax.

CellML/XML
This is the XML representation of a CellML model.

Glossary 22

Todo

® we have extension objects for elements, but what about attributes? We do have an explicit
representation of namespace for one attribute that has significance to a model if it is user defined (see
Relationship Ref), but this is different from arbitrary attributes in an extension namespace.

® RDF object notes need to be resolved — see Cellml Object

Todo 23

	Table of Contents
	CellML API
	Basic Building Blocks
	CellML Attribute String
	URI
	CellML Object
	Named CellML Object
	Extension Object

	CellML Constructs
	Model
	Component
	Imports
	Import
	Import Component
	Import Units

	Unit definitions
	Units
	Unit

	Maths
	Variables
	Variable Interface
	Variable

	Component References
	Component Ref

	Relationship Ref
	Group
	Connection
	Map Components
	Map Variables
	Reactions
	Reaction
	Variable Ref
	Reactant Variable Ref
	Product Variable Ref
	Rate Variable Ref
	Role
	Reactant Role
	Product Role
	Rate Role

	RDF metadata

	Collections
	Collection of CellML Attribute Strings
	Collection Of CellML Objects
	Collection Of Named CellML Objects
	Collection Of Extension Objects
	Collection Of Models
	Collection Of Components
	Collection Of Imports
	Collection Of Variables
	Collection Of Units
	Collection Of Unit
	Collection Of Math
	Collection Of Connections
	Collection Of Groups
	Collection Of Relationship Refs
	Collection Of ComponentRefs
	Collection Of MapVariables
	Collection Of VariableRef Objects
	Collection Of Role Objects

	Model Management API
	Model Manager
	Model Map
	Serialiser
	Namespaces
	Namespace Prefix
	Namespace Map

	Factories
	CellML Attribute Map
	CellML Object Factory
	Generic factory handler
	Specific factories

	Exceptions
	Utilities
	General Notes
	Resolving imported structures
	Unique names
	Representation of imported objects
	Instantiation
	Implicit structures
	Modifying imported structures

	Handling Rdf

	Glossary
	Todo

