

1

27
th

 June 2015 PJH

Tutorial on CellML, OpenCOR & the Physiome Model Repository

This tutorial shows you how to install and run the OpenCOR1 software [1], to author and edit CellML
models2 [2] and to use the Physiome Model Repository (PMR)3 [3]. We start by giving a brief
background on the VPH-Physiome project. We then create a simple model, save it as a CellML file
and run model simulations. We next try opening existing CellML models, both from a local directory
and from the Physiome Model Repository. The various features of CellML4 and OpenCOR are then
explained in the context of increasingly complex biological models. A simple linear first order ODE
model and a nonlinear third order model are introduced. Ion channel gating models are used to
introduce the way that CellML handles units, components, encapsulation groups and connections.
More complex potassium and sodium ion channel models are then developed and subsequently
imported into the Hodgkin-Huxley 1952 squid axon neural model using the CellML model import
facility. The Noble 1962 model of a cardiac cell action potential is used to illustrate importing of units
and parameters. The tutorial finishes with sections on model annotation and the facilities available
on the CellML website and the Physiome Model Repository to support model development,
including the links to bioinformatic databases. There is a strong emphasis in the tutorial on
establishing ‘best practice’ in the creation of CellML models and using the PMR resources,
particularly in relation to modular approaches (model hierarchies) and model annotation.

Note: This tutorial relies on readers having some background in algebra and calculus, but tries to
explain all mathematical concepts beyond this, along with the physical principles, as they are needed
for the development of CellML models.5

Contents page

1. Background to the VPH-Physiome project ... 2
2. Install and launch OpenCOR .. 3
3. Create and run a simple CellML model: editing and simulation ... 4
4. Open an existing CellML file from a local directory or the Physiome Model Repository 8
5. A simple first order ODE ... 9
6. The Lorenz attractor ... 10
7. A model of ion channel gating and current: Introducing CellML units .. 12
8. A model of the potassium channel: Introducing CellML components and connections 16
9. A model of the sodium channel: Introducing CellML encapsulation and interfaces 20
10. A model of the nerve action potential: Introducing CellML imports ... 24
11. A model of the cardiac action potential: Importing units and parameters 28
12. Model annotation ... 34
13. The Physiome Model Repository and the link to bioinformatics ... 38
14. Speed comparisons with MATLAB .. 42
15. SED-ML, functional curation and Web Lab .. 43
16. Future developments ... 44
17. References .. 45

1
 OpenCOR is an open source, freely available, C

++
 desktop application written by Alan Garny at INRIA with

funding support from the Auckland Bioengineering Institute (www.abi.auckland.ac.nz) and the NIH-funded
Virtual Physiological Rat (VPR) project led by Dan Beard at the University of Michigan (http://virtualrat.org).
2
 For an overview and the background of CellML see www.cellml.org. This project is led by Poul Nielsen and

David (Andre) Nickerson at the Auckland (University) Bioengineering Institute (ABI: www.abi.auckland.ac.nz).
3
 https://models.physiomeproject.org. The PMR project is led by Tommy Yu at the ABI.

4
 For details on the specifications of CellML1.0 see www.cellml.org/specifications/cellml_1.0.

5
 Please send any errors discovered or suggested improvements to p.hunter@auckland.ac.nz.

MedTech CoRE

http://www.abi.auckland.ac.nz/
http://virtualrat.org/
http://www.cellml.org/
http://www.abi.auckland.ac.nz/
https://models.physiomeproject.org/
http://www.cellml.org/specifications/cellml_1.0
mailto:p.hunter@auckland.ac.nz

2

1. Background to the VPH-Physiome project

To be of benefit to applications in healthcare, organ and whole organism
physiology needs to be understood at both a systems level and in terms of
subcellular function and tissue properties. Understanding a re-entrant
arrhythmia in the heart, for example, depends on knowledge of not only
numerous cellular ionic current mechanisms and signal transduction
pathways, but also larger scale myocardial tissue structure and the spatial
variation in protein expression. As reductionist biomedical science succeeds
in elucidating ever more detail at the molecular level, it is increasingly
difficult for physiologists to relate integrated whole organ function to
underlying biophysically detailed mechanisms that exploit this molecular
knowledge. Multi-scale computational modelling is used by engineers and
physicists to design and analyse mechanical, electrical and chemical
engineering systems. Similar approaches could benefit the understanding of
physiological systems. To address these challenges and to take advantage
of bioengineering approaches to modelling anatomy and physiology, the
International Union of Physiological Sciences (IUPS) formed the Physiome
Project in 1997 as an international collaboration to provide a computational
framework for understanding human physiology6.

One of the primary goals of the Physiome Project [4] has been to promote
the development of standards for the exchange of information between
models. The first of these standards, dealing with time varying but spatially
lumped processes, is CellML [5]. The second (dealing with spatially and time
varying processes) is FieldML [6,7]7. A further goal of the Physiome Project
has been the development of open source tools for creating and visualizing
standards-based models and running model simulations. OpenCOR is the
latest in a series of software projects aimed at providing a modelling
environment for CellML models. Similar tools exist for FieldML models.

Following the publication of the STEP8 (Strategy for a European Physiome)
Roadmap in 2006, the European Commission in 2007 initiated the Virtual
Physiological Human (VPH) project [8]. A related US initiative by the
Interagency Modeling and Analysis Group (IMAG) began in 20039. These
projects and similar initiatives are now coordinated and are collectively
referred to here as the ‘VPH-Physiome’ project10. The VPH-Institute11 was
formed in 2012 as a virtual organisation to providing strategic leadership,
initially in Europe but now globally, for the VPH-Physiome Project.

6
 www.iups.org. The IUPS President, Denis Noble from Oxford University, and Jim Bassingthwaighte from the University of

Washington in Seattle have been two of the driving forces behind the Physiome Project. Peter Hunter from the University
of Auckland was appointed Chair of the newly created Physiome Commission of the IUPS in 2000. The IUPS Physiome
Committee, formed in 2008, was co-chaired by Peter Hunter and Sasha Popel (JHU) and is now chaired by Andrew
McCulloch from UCSD. The UK Wellcome Trust provided initial support for the Physiome Project through the Heart
Physiome grant awarded in 2004 to David Paterson, Denis Noble and Peter Hunter.
7
 CellML began as a joint public-private initiative in 1998 with funding by the US company Physiome Sciences (CEO Jeremy

Levin), before being launched under IUPS as a fully open source project in 1999.
8
 The STEP report, led by Marco Viceconte (University of Sheffield, UK), is available at www.europhysiome.org/roadmap.

9
 This coordinates various US Governmental funding agencies involved in multi-scale bioengineering modeling research

including NIH, NSF, NASA, the Dept of Energy (DoE), the Dept of Defense (DoD), the US Dept of Agriculture and the Dept of
Veteran Affairs. See www.nibib.nih.gov/Research/MultiScaleModeling/IMAG. Grace Peng of NHBIB leads the IMAG group.
10

 Other significant contributions to the VPH-Physiome project have come from Yoshi Kurachi in Japan (www.physiome.jp),
Stig Omholt in Norway (www.ntnu) and Chae-Hun Leem in Korea (www.physiome.or.kr).
11

 www.vph-institute.org. Formed in 2012, the inaugural Director was Marco Viceconti. The current Director is Adriano
Henney. The inaugural and current President of the VPH-Institute is Denis Noble.

VPH-Institute

http://www.iups.org/
http://www.europhysiome.org/roadmap
http://www.nibib.nih.gov/Research/MultiScaleModeling/IMAG
http://www.physiome.jp/
http://www.ntnu/
http://www.physiome.or.kr/
http://www.vph-institute.org/

3

2. Install and launch OpenCOR

Download OpenCOR from www.opencor.ws. Versions are available for Windows, Mac and Linux.
Note that the annotation section of this tutorial relies on the OpenCOR snapshot 2015-06-09 (or
later). Create a shortcut to the executable (found in the bin directory) on your desktop and click on
this to launch OpenCOR. A window will appear that looks like Figure 1(a).

 (a) (b)

Figure 1. (a) Default positioning of dockable windows. (b) An alternative configuration achieved by dragging
and dropping the dockable windows.

The central area is used to interact with files. By default, no files are open, hence the OpenCOR logo
is shown instead. To the sides, there are dockable windows, which provide additional features.
Those windows can be dragged and dropped to the top or bottom of the central area as shown in
Figure 1(b) or they can be individually undocked or closed. All closed panels can be re-displayed by
enabling them in the View menu, or by using the Tools menu Reset All option. Clicking on ‘CTRL’12 &
‘spacebar’ on the Windows version, removes (for less clutter) or restores these two side panels.

Any of the subpanels (Physiome Model Repository, File Browser, and File Organiser) can be closed
with the top right delete button, and then restored from the View .. Windows.. menu. Files can be
dragged and dropped into the File Organiser to create a local directory structure for your files.

OpenCOR has a plugin architecture
and can be used with or without a
range of modules. These can be
viewed under the Tools menu. By
default they are all included, as
shown in Figure 2. Information
about developing plugins for
OpenCOR is also available13.

12

 The ⌘ key being the equivalent on Macs.
13

 www.opencor.ws/developer/develop/plugins/index.html

Figure 2. Showing the plugins for
OpenCOR that are selectable. Untick
the box on the bottom left to show all
plugins.

http://www.opencor.ws/
http://www.opencor.ws/developer/develop/plugins/index.html

4

3. Create and run a simple CellML model: editing and simulation

In this example we create a simple CellML model and run it. The model is the Van der Pol oscillator14
defined by the second order equation

 ()

with initial conditions

 . The parameter controls the magnitude of the damping

term. To create a CellML model we convert this to two first order equations15 by defining the

velocity

 as a new variable :

 ()

The initial conditions are now .

With the central pane in Editing mode (e.g. CellML Text view), under the File menu and New, click on
CellML 1.1 File then type in the following lines of code after deleting the three lines that indicate
where the code should go:

def model van_der_pol_model as
 def comp main as
 var t: dimensionless {init: 0};
 var x: dimensionless {init: -2};
 var y: dimensionless {init: 0};
 var mu: dimensionless {init: 1};

// These are the ODEs
 ode(x,t)=y;
 ode(y,t)=mu*(1{dimensionless}-sqr(x))*y-x;
 enddef;
enddef;

Things to note16 are: (i) the closing semicolon at the end of each line (apart from the first two def
statements that are opening a CellML construct); (ii) the need to indicate dimensions for each
variable and constant (all dimensionless in this example – but more on dimensions later); (iii) the use
of ode(x,t) to indicate a first order17 ODE in x and t, (iv) the use of the squaring function sqr(x) for ,
and (v) the use of ‘//’ to indicate a comment.

A partial list of mathematical functions available for OpenCOR is:

 sqr(x) √ sqrt(x) ln(x) log(x) exp(x) pow(x,a)

 sin(x) cos(x) tan(x) csc(x) sec(x) cot(x)

 asin(x) acos(x) atan(x) acsc(x) asec(x) acot(x)

 sinh(x) cosh(x) tanh(x) csch(x) sech(x) coth(x)

 asinh(x) acosh(x) atanh(x) acsch(x) asech(x) acoth(x)

Table 1. The list of mathematical functions available for coding in OpenCOR.

Positioning the cursor over either of the ODEs renders the maths in standard form above the code as
shown in Figure 3(a).

14

 en.wikipedia.org/wiki/Van_der_Pol_oscillator
15

 Note that gray boxes are used to indicate equations that are implemented directly in OpenCOR.
16

 For more on the CellML Text view see opencor.ws/user/plugins/editing/CellMLTextView.html.
17

 Note that a more elaborated version of this is ‘ode(x, t, 1{dimensionless})’ and a 2
nd

 order ODE can be
specified as ‘ode(x, t, 2{dimensionless})’. 1

st
 order is assumed as the default.

http://en.wikipedia.org/wiki/Van_der_Pol_oscillator
http://opencor.ws/user/plugins/editing/CellMLTextView.html

5

Note that CellML is a declarative language18 (unlike say C, Fortran or Matlab, which are procedural
languages) and therefore the order of statements does not affect the solution. For example, the
order of the ODEs could equally well be

The significance of this will become apparent later when we import several CellML models to create
a composite model.

 (a) (b)

Figure 3. (a) Positioning the cursor over an equation and clicking (shown by the highlighted line) renders the
maths. (b) Once the model has been successfully saved, the CellML Text view tab becomes white rather than
grey. The right hand tabs provide different views of the CellML code.

Now save the code to a local folder using Save under the File menu (or ‘CTRL-S’) and choosing .cellml
as the file format19. With the CellML model saved various views, accessed via the tabs on the right
hand edge of the window, become available. One is the CellML Text view (the view used to enter the
code above); another is the Raw CellML view that displays the way the model is stored and is
intentionally verbose to ensure that the meaning is always unambiguous (note that positioning the
cursor over part of the code shows the maths in this view also); and another is the Raw view. Notice
that ‘CTRL-T’ in the Raw CellML view performs validation tests on the CellML model. The CellML Text
view provides a much more convenient format for entering and editing the CellML model.

With the equations and initial conditions defined, we are ready to run the model. To do this, click on
the Simulation tab on the left hand edge of the window. You will see three main areas - at the left
hand side of the window are the Simulation, Solvers, Graphs and Parameters panels, which are
explained below. At the right hand side is the graphical output window, and running along the
bottom of the window is a status area, where status messages are displayed.

Simulation panel
This area is used to set up the simulation settings.

 Starting point - the value of the variable of integration (often time) at which the simulation
will begin. Leave this at 0.

 Ending point - the point at which the simulation will end. Set to 100.
 Point interval - the interval between data points on the variable of integration. Set to 0.1.

Just above the Simulation panel are controls for running the simulation. These are:

Run (), Pause (), Reset parameters (), Clear simulation data (), Interval delay (),
Add()/Subtract() graphical output windows and Output solution to a CSV file ().

For this model, we suggest that you create three graphical output windows using the + button.

18

 Note also that the mathematical expressions in CellML are based on MathML – see www.w3.org/Math/
19

 Note that ‘.cellml’ is not strictly required but is best practice.

ode(y,t)=mu*(1{dimensionless}-sqr(x))*y-x;
ode(x,t)=y;

http://www.w3.org/Math/

6

Solvers panel
This area is used to configure the solver that will run the simulation.

 Name - this is used to set the solver algorithm. It will be set by default to be the most
appropriate solver for the equations you are solving. OpenCOR allows you to change this to
another solver appropriate to the type of equations you are solving if you choose to. For
example, CVODE for ODE (ordinary differential equation) problems, IDA for DAE (differential
algebraic equation) problems, KINSOL for NLA (non-linear algebraic) problems20.

 Other parameters for the chosen solver – e.g. Maximum step, Maximum number of steps,
and Tolerance settings for CVODE and IDA. For more information on the solver parameters,
please refer to the documentation for the particular solver.

Note: these can all be left at their default values for our simple demo problem21.

Graphs panel
This shows what parameters are being plotted once these have been defined in the Parameters
panel. These can be selected/deselected by clicking in the box next to a parameter.

Parameters panel
This panel lists all the model parameters, and allows you to select one or more to plot against the
variable of integration or another parameter in the graphical output windows. OpenCOR supports
graphing of any parameter against any other. All variables from the model are listed here, arranged
by the components in which they appear, and in alphabetical order. Parameters are displayed with
their variable name, their value, and their units. The icons alongside them have the following
meanings:

Editable constant Editable state variable

 Computed constant Rate variable

 Variable of integration Algebraic quantity

Right clicking on a parameter provides the options for displaying that parameter in the currently
selected graphical output window. With the cursor highlighting the top graphical output window (a
blue line appears next to it), select x then Plot Against Variable of Integration – in this case t - in
order to plot x(t). Now move the cursor to the second graphical output window and select y then t to
plot y(t). Finally select the bottom graphical output window, select y and select Plot Against then
Main then x to plot y(x).

Now click on the Run control. You will see a progress bar running along the bottom of the status
window. Status messages about the successful simulation, including the time taken, are displayed in
the bottom panel. This can be hidden by dragging down on the bar just above the panel. Figure 4
shows the results. Use the interval delay wheel to slow down the plotting if you want to watch the
solution evolve. You can also pause the simulation at any time by clicking on the Run control and if
you change a parameter during the pause, the simulation will continue (when you click the Run
control button again) with the new parameter.

Note that the values shown for the various parameters are the values they have at the end of the

solution run. To restore these to their initial values, use the Reset parameters () button. To clear
the graphical output traces, click on the Clear simulation data () button.

The top two graphical output panels are showing the time-dependent solution of the x and y
variables. The bottom panel shows how y varies as a function of x. This is called the solution in state

20

 Other solvers include forward Euler, Heun and Runga-Kutta solvers (RK2 and RK4).
21

 Note that a model that requires a stimulus protocol should have the maximum step value of the CVODE
solver set to the length of the stimulus.

7

space and it is often useful to analyse the state space solution to capture the key characteristics of
the equations being solved.

Figure 4. Graphical output from OpenCOR. The top window is x(t), the middle is y(t) and the bottom is y(x).
The Graphs panel shows that y(x) is being plotted on the graph output window highlighted by the LH blue line.
The window at the very bottom provides runtime information on the type of equation being solved and the
simulation time (2ms in this case). The computed variables shown in the left hand panel are at the values they
have at the end of the simulation.

To obtain numerical values for all variables (i.e. x(t) and y(t)), click on the CSV file button (). You
will be asked to enter a filename and type (use .csv). Opening this file (e.g. with Microsoft Excel)
provides access to the numerical values. Other output types (e.g. BiosignalML) will be available in
future versions of OpenCOR.

You can move the graphical output traces around with ‘left click and drag’ and you can change the
horizontal or vertical scale with ‘right click and drag’. Holding the SHIIFT key down while clicking on a
graphical output panel allows you to interrogate the solution at any point. Right clicking on a panel
provides zoom facilities.

The various plugins used by OpenCOR can be viewed under the Tools menu. A French language
version of OpenCOR is also available under the Tools menu. An option under the File menu allows a
file to be locked (also ‘CTRL-L’). To indicate that the file is locked, the background colour switches to
pink in the CellML Text and Raw CellML views and a lock symbol appears on the filename tab. Note
that OpenCOR text is case sensitive.

𝒙(𝒕)

𝒚(𝒕)

𝒚(𝒙)

8

4. Open an existing CellML file from a local directory or the Physiome Model Repository

Go to the File menu and select Open.... Browse to the folder that contains your existing models and
select one. Note that this brings up a new tabbed window and you can have any number of CellML
models open at the same time in order to quickly move between them. A model can be removed
from this list by clicking on next to the CellML model name.

You can also access models from the left hand panel in Figure 1(a). If this panel is not currently
visible, use ‘CTRL-spacebar’ to make it reappear. Models can then be accessed from any one of the
three subdivisions of this panel – File Browser, Physiome Model Repository or File Organiser. For a
file under File Browser or File Organiser, either double-click it or ‘drag&drop’ it over the central
workspace to open that model. Clicking on a model in the Physiome Model Repository (PMR) (e.g.
Chen, Popel, 2007) opens a new browser window with that model (PMR is covered in more detail in
Section 13). You can either load this model directly into OpenCOR or create an identical copy (clone)
of the model in your local directory. Note that PMR contains workspaces and exposures. Workspaces
are online environments for the collaborative development of models (e.g. by geographically
dispersed groups) and can have password protected access. Exposures are workspaces that are
exposed for public view and mostly contain models from peer-reviewed journal publications. There
are about 600 exposures based on journal papers and covering many areas of cell processes and
other ODE/algebraic models, but these are currently being supplemented with reusable protein-
based models – see discussion in a Section 13.

To load a model directly into OpenCOR, click on the right-most of the two buttons in Figure 5 - this
lists the CellML models in that exposure - and then click on the model you want. Clicking on the left
hand button copies the PMR workspace to a local directory that you specify. This is useful if you
want to use that model as a template for a new one you are creating.

Figure 5. The Physiome Model Repository (PMR) window listing all
PMR models. These can be opened from within OpenCOR using
the two buttons to the right of a model, as explained below.

RH button lists all CellML files for this model. Clicking on
one of those uploads the model into OpenCOR.

LH button copies the PMR workspace to a local directory.

9

5. A simple first order ODE

The simplest example of a first order ODE is

with the solution

 ()

 . ()

/ ,

where () or , the value of () at , is the initial condition. The final steady state solution as

 is (|)

 (see Figure 6). Note that

 is called the time constant of the

exponential decay, and that

 ()

 . ()

/ .

At , () has therefore fallen to

 (or about 37%) of the difference between the initial (())

and final steady state (()) values.22

Choosing parameters and () , the CellML Text for this model is

def model first_order_model as
 def comp main as
 var t: dimensionless {init: 0};
 var y: dimensionless {init: 5};
 var a: dimensionless {init: 1};
 var b: dimensionless {init: 2};

 ode(y,t)=-a*y+b;
 enddef;
enddef;

The solution by OpenCOR is shown in Figure 7(a) for these parameters (a decaying exponential) and
in Figure 7(b) for parameters and () (an inverted decaying exponential). Note
the simulation panel with Ending point=10, Point interval=0.1. Try putting .

 (a) (b)

Figure 7. OpenCOR output () for the simple ODE model with parameters (a) and () ,
and (b) and () . The red arrow indicates the point at which the trace reaches the time
constant (or ≈37% of the difference between the initial and final solution values). The black arrows
indicate the initial and final (steady state) solutions. Note that the parameters on the left have been reset to
their initial values for this figure – normally they would be at their final solution values.

22

 It is often convenient to write a first order equation as

 , so that its solution is expressed in

terms of time constant , initial condition and steady state solution as: () ()
 ⁄ .

𝝉 𝟏

𝝉 𝟏

𝒚

𝒚

𝒚𝟎

𝒚𝟎

exponential
decay

Figure 6. Solution of 1
st

 order equation.
 𝑡

𝑦(𝑡)

𝑏

𝑎

𝑦

𝑦

10

These two solutions have the same exponential time constant (

) but different initial and

final (steady state) values.

The exponential decay curve shown on the left in Figure 7 is a common feature of many models and

in the case of radioactive decay (for example) is a statement that the rate of decay (

) is

proportional to the current amount of substance (). This is illustrated on the NZ$100 note (should
you be lucky enough to possess one), shown in Figure 8.

Figure 8. The exponential curve representing the naturally occurring radioactive decay explained by the New
Zealand Noble laureate Sir Ernest Rutherford - best known for ‘splitting the atom’. This may be the only bank
note depicting the mathematical solution of a first order ODE.

6. The Lorenz attractor

An example of a third order ODE system (i.e. three 1st order equations) is the Lorenz equations23.

This system has three equations:

 ()

 ()

where and are parameters.

The CellML Text code entered for
these equations is shown in Figure 9
with parameters

 , , = 2.66667

and initial conditions

 () () () 1.

Solutions for (), () and (), corresponding to the time integration parameters shown on the
LHS, are shown in Figure 10. Note that this system exhibits ‘chaotic dynamics’ with small changes in
the initial conditions leading to quite different solution paths.

This example illustrates the value of OpenCOR’s ability to plot variables as they are computed. Use
the Simulation Delay wheel to slow down the plotting by a factor of about 5-10,000 – in order to
follow the solution as it spirals in ever widening trajectories around the left hand wing of the
attractor before coming close to the origin that then sends it off to the right hand wing of the
attractor.

23

 http://en.wikipedia.org/wiki/Lorenz_system

Figure 9. CellML Text code for the Lorenz equations.

http://en.wikipedia.org/wiki/Lorenz_system

11

Figure 10. Solutions of the Lorenz equations. Note that the parameters on the left have been reset to their
initial values for this figure – normally they would be at their final solution values.

Solutions to the Lorenz equations are organised by the 2D ‘Lorenz manifold’. This surface has a very
beautiful shape and has become an art form – even rendered in crochet!24 (See Figure 11).

Exercise for the reader

Another example of intriguing and unpredictable behaviour from a simple deterministic ODE system
is the ‘blue sky catastrophe’ model [9] defined by the following equations:

with parameter and initial conditions () , () . Run to with
 and plot () and (). Also try with to see how sensitive the solution is to small
changes in parameter values.

24

 www.math.auckland.ac.nz/~hinke/crochet/

𝒙(𝒕)

𝒚(𝒙)

𝒛(𝒙)

Figure 11. The crocheted Lorenz manifold
made by Hinke Osinga and Bernd Krauskopf
of the Mathematics Department at the
University of Auckland, New Zealand.

http://www.math.auckland.ac.nz/~hinke/crochet/

12

7. A model of ion channel gating and current: Introducing CellML units

A good example of a model based on a first order equation is the one used by Hodgkin and Huxley
[10] to describe the gating behaviour of an ion channel (see also next three sections). Before we
describe the gating behaviour of an ion channel, however, we need to explain the concepts of the
‘Nernst potential’ and channel conductance.

An ion channel is a protein or protein complex embedded in the bilipid membrane surrounding a cell
and containing a pore through which an ion (or) can pass when the channel is open. If the
concentration of this ion is , - outside the cell and , - inside the cell, the force driving an ion
through the pore is calculated from the change in entropy.

Entropy (J.K-1) is a measure of the number of microstates
available to a system, as defined by Boltzmann’s equation
 , where is the number of ways of arranging a given
distribution of microstates of a system and is Boltzmann’s
constant25. The driving force for ion movement is the dispersal of
energy into a more probable distribution (see Figure 12; cf the
second law of thermodynamics26).

The energy change associated with this change of entropy
at temperature is (J).

For a given volume of fluid the number of microstates
available to a solute (and hence the entropy of the solute) at a
high concentration is less than that for a low concentration27. The
energy difference driving ion movement from a high ion
concentration , - (lower entropy) to a lower ion concentration
, - (higher entropy) is therefore

 . [

]

 []

/

0 1

0 1

 (J.ion
-1

)

or

0 1

0 1

 (J.mol
-1

).

 ≈ 1.34x10-23 (J.K-1) x 6.02x1023 (mol-1) ≈ 8.4 (J.mol-1K-1) is the ‘universal gas constant’28.
At 25°C (298K), ≈ 2.5 kJ.mol-1.

Every positively charged ion that crosses the membrane raises the
potential difference and produces an electrostatic driving force
that opposes the entropic force (see Figure 13). To move an
electron of charge e (≈1.6x10-19C) through a voltage change of

 (V) requires energy (J) and therefore the energy needed

to move an ion of valence z=1 (the number of charges per ion)

through a voltage change of is (J.ion-1) or
 (J.mol-1). Using Faraday’s constant , where
 ≈0.96x105 C.mol-1, the change in energy density at the macroscopic scale is (J.mol-1).

25

 The Brownian motion of individual molecules has energy (J), where the Boltzmann constant is
approximately 1.34x10

-23
 (J.K

-1
). At 25°C, or 298K, = 4.10

-21
(J) is the minimum amount of energy to contain

a ‘bit’ of information at that temperature.
26

 The first law of thermodynamics states that energy is conserved, and the second law (that natural processes
are accompanied by an increase in entropy of the universe) deals with the distribution of energy in space.
27

 At infinitely high concentration the specified volume is jammed packed with solute and the entropy is zero.
28

 is Avogadro’s number (6.023x10
23

) and is the scaling factor between molecular and macroscopic
processes. Boltzmann’s constant and electron charge e operate at the atomic/molecular scale. Their effect
at the physiological scale is via the universal gas constant and Faraday’s constant .

Figure 12. Distribution of microstates
in a system [11]. The 16 particles in a
confined region (left) have only one
possible arrangement (𝑊 = 1) and
therefore zero entropy (𝑘𝐵𝑙𝑛𝑊).
When the barrier is removed and the
number of possible locations for each
particle increases 4x (right), the
number of possible arrangements for
the 16 particles increases by 4

16
 and

the increase in entropy is therefore
ln(4

16
) or 16ln4. The thermal energy

(temperature) of the previously
confined particles on the left has
been redistributed in space to
achieve a more probable (higher
entropy) state. If we now added more
particles to the container on the right,
the concentration would increase and
the entropy would decrease.

Figure 13.The balance between
entropic and electrostatic forces
determines the Nernst potential.

𝑖 𝑌

,𝑌 -𝑖

,𝑌 -𝑜

Intracellular

Extracellular

13

 (a) (b)
Figure 16. Transient behaviour for one
gate (left) and 𝛾 gates in series (right).
Note that the right hand graph has an
initial S-shaped increase, reflecting
the multiple gates in series.

1

𝑡

𝑦

𝑡

𝑦𝛾

0

No further movement of ions takes place when the force for entropy driven ion movement exactly
equals the opposing electrostatic driving force associated with charge movement:

0 1

0 1

 (J.mol
-1

) or

0 1

0 1

 (J.C
-1

 or V)

where is the ‘equilibrium’ or ‘Nernst’ potential for . At 25°C (298K),

 (J.C-1) ≈ 25mV.

For an open channel the electrochemical current flow is
driven by the open channel conductance times the
difference between the transmembrane voltage and the
Nernst potential for that ion:

 ().

This defines a linear current-voltage relation (‘Ohms law’) as
shown in Figure 14. The gates to be discussed below modify
this open channel conductance.

To describe the time dependent transition between the
closed and open states of the channel, Hodgkin and Huxley
introduced the idea of channel gates that control the
passage of ions through a membrane ion channel. If the
fraction of gates that are open is y, the fraction of gates
that are closed is 1-y, and a first order ODE can be used to
describe the transition between the two states (see Fig.15):

 ()

where is the opening rate and is the closing rate.

The solution to this ODE is

 ()

The constant can be interpreted as ()

 as

in the previous example and, with () (i.e. all gates
initially shut), the solution looks like Figure 16(a).

The experimental data obtained by Hodgkin and Huxley for the squid axon, however, indicated that
the initial current flow began more slowly (Figure 16b) and they modelled this by assuming that the
ion channel had gates in series so that conduction would only occur when all gates were at least
partially open. Since is the probability of a gate being open, is the probability of all gates
being open (since they are assumed to be independent) and the current through the channel is

 ()

where () is the steady state current through the open gate.

We can represent this in OpenCOR with a simple extension of the first order ODE model, but in
developing this model we will also demonstrate the way in which CellML deals with units29.

29

 The decision to deal with units in CellML, rather than just ignoring them or insisting that all equations are
represented in dimensionless form, was made in order to be able to be able to check the physical consistency
of all terms in each equation. It is well accepted in engineering analysis that thinking about and dealing with
units is a key aspect of modelling. Taking the ratio of dimensionally consistent terms provides non-dimensional
numbers which can be used to decide when a term in an equation can be omitted in the interests of modelling
simplicity. We investigate this idea further in a later section.

𝛼𝑦

Figure 15. Ion channel gating kinetics.
𝑦 is the fraction of gates in the open
state. 𝛼𝑦 and 𝛽𝑦 are the rate

constants for opening and closing,
respectively.

𝛽𝑦
𝑦

 𝑦

𝑖 𝑌

𝐸𝑌
𝑉

𝑖 𝑌 𝑔 𝑌(𝑉 𝐸𝑌)

Figure 14. Open channel linear current-
voltage relation.

14

There are seven base physical quantities defined by the Système International d’Unités (SI)30.
These are (with their SI units):

 length (meter or m)

 time (second or s)

 amount of substance (mole)

 temperature (K)

 mass (kilogram or kg)

 current (amp or A)

 luminous intensity (candela).

All other units are derived from these seven. Additional derived units that CellML defines intrinsically
(with their dependence on previously defined units) are: Hz (s−1); Newton, N (kg⋅m⋅s−2); Joule, J
(N.m); Pascal, Pa (N.m-2); Watt, W (J.s−1); Volt, V (W.A−1); Siemen, S (A.V−1); Ohm, (V.A−1);
Coulomb, C (s.A); Farad, F (C.V−1); Weber, Wb (V.s); and Henry, H (Wb.A−1). Multiples and fractions
of these are defined as follows:

Multiples

Prefix deca hecto kilo mega giga tera peta exa zetta yotta

Symbol da h k M G T P E Z Y

Factor 10
0
 10

1
 10

2
 10

3
 10

6
 10

9
 10

12
 10

15
 10

18
 10

21
 10

24

Fractions

Prefix deci centi milli micro nano pico femto atto zepto yocto

Symbol d c m μ n p f a z y

Factor 10
0
 10

−1
 10

−2
 10

−3
 10

−6
 10

−9
 10

−12
 10

−15
 10

−18
 10

−21
 10

−24

Units for this model, with multiples and fractions, are illustrated in the following CellML Text code:

 def model first_order_model as
 def unit millisec as
 unit second {pref: milli};
 enddef;

 def unit per_millisec as
 unit second {pref: milli, expo: -1};
 enddef;

 def unit millivolt as
 unit volt {pref: milli};
 enddef;

 def unit microA_per_cm2 as
 unit ampere {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;

 def unit milliS_per_cm2 as
 unit siemens {pref: milli};
 unit metre {pref: centi, expo: -2};
 enddef;

 def comp ion_channel as
 var V: millivolt {init: 0};
 var t: millisec {init: 0};
 var y: dimensionless {init: 0};
 var E_y: millivolt {init: -85};
 var i_y: microA_per_cm2;
 var g_y: milliS_per_cm2 {init: 36};
 var gamma: dimensionless {init: 4};
 var alpha_y: per_millisec {init: 1};
 var beta_y: per_millisec {init: 2};

 ode(y, t) = alpha_y*(1{dimensionless}-y)-beta_y*y;

 i_y = g_y*pow(y, gamma)*(V-E_y);
 enddef;
 enddef;

30

 http://en.wikipedia.org/wiki/International_System_of_Units

Define units and initial conditions for variables

Define units for time as millisecs

Define per_millisec units

Define units for voltage as millivolts

Define units for current as microAmps per cm
2

Define units for conductance as milliSiemens per cm
2

Define ODE for gating variable y
Define channel current

http://en.wikipedia.org/wiki/International_System_of_Units

15

The solution of these equations for the parameters indicated above is illustrated in Figure 17.

Figure 17. The behaviour of an ion channel with gates transitioning from the closed to the open state at
a membrane voltage . The opening and closing rate constants are ms

-1
 and ms

-1
. The ion

channel has an open conductance of mS.cm
-2

 and an equilibrium potential of mV. The
upper transient is the response () for each gate and the lower trace is the current through the channel. Note
the slow start to the current trace in comparison with the single gate transient ().

The model of a gated ion channel presented here is used in the next two sections for the neural
potassium and sodium channels and then in Section 11 for cardiac ion channels. The gates make the
channel conductance time dependent and, as we will see in the next section, the experimentally
observed voltage dependence of the gating rate constants and means that the channel

conductance (including the open channel conductance) is voltage dependent. For a partially open

channel (), the steady state conductance is ()
 , where

. Moreover the gating

time constants

 are therefore also voltage dependent. Both of these voltage dependent

factors of ion channel gating are important in explaining channel properties, as we show now for the
neural potassium and sodium ion channels.

8. A model of the potassium channel: Introducing CellML components and connections

We now deal specifically with the application of the previous model to the Hodgkin and Huxley (HH)
potassium channel. Following the convention introduced by Hodgkin and Huxley, the gating variable
for the potassium channel is and the number of gates in series is , therefore

 ()

where 36 mS.cm-2, and with intra- and extra-cellular concentrations , - = 90mM and , - =
3mM, respectively, the Nernst potential for the potassium channel (z=1 since 1 +ve charge on) is

, -
, -

 .

As noted above, this is called the equilibrium potential since it is the potential across the cell
membrane when the channel is open but no current is flowing because the electrostatic driving
force from the potential (voltage) difference between internal and external ion charges is exactly
matched by the entropic driving force from the ion concentration difference. is the channel
conductance.

Note S-shaped 𝑖𝑌(𝑡) curve
resulting from 4 gates in series.

𝒚(𝒕)

𝒊𝒀(𝒕)

16

The gating kinetics are described (as before) by

 ()

with time constant

 (see page 9).

The main difference from the gating model in our previous
example is that Hodgkin and Huxley found it necessary to make
the rate constants functions of the membrane potential (see
Figure 18) as follows31:

 ()

 ()

;
 ()

 .

Note that under steady state conditions when and

 , |

 .

The voltage dependence of the steady state channel
conductance is then

 .

/

 .

(see Figure 18). The steady state current-voltage relation for
the channel is illustrated in Figure 19.

These equations are captured with OpenCOR CellML Text view (together with the previous unit
definitions) on the next page. But first we need to explain some further CellML concepts.

We introduced CellML units above. We now need to
introduce three more CellML constructs: components,
connections (mappings between components) and groups.
For completeness we also show one other construct in
Figure 20 that will be used later in Section 10: imports.

Defining components serves two purposes: it preserves a
modular structure for CellML models, and allows these
component modules to be imported into other models, as
we will illustrate later [2]. For the potassium channel
model we define components representing (i) the
environment, (ii) the potassium channel conductivity, and
(iii) the dynamics of the n-gate.

Since certain variables (t, V and n) are shared between
components, we need to also define the component maps
as indicated in the CellML Text view on the next page.

31

 The original expression in the HH paper used
 ()

()

 and

 , where is defined

relative to the resting potential (-75mV) with +ve corresponding to +ve inward current and ().

CellML

model

component

variable

math

group

relationshipRef

componentRef

imported units

imported component

import

units

unit

connection

mapComponent

mapVariable

Figure 20. Key entities in a CellML model.

1

𝛼𝑛

𝛽𝑛

𝑉

Figure 18. Voltage dependence of

rate constants 𝛼𝑛 and 𝛽𝑛 (ms-1),
time constant 𝜏𝑛(ms) and relative
conductance 𝑔𝑆𝑆 𝑔 𝑌 .

𝜏𝑛

𝑔𝑆𝑆 𝑔 𝑌

𝑉

Figure 19. The steady-state current-
voltage relation for the potassium
channel.

𝐸𝐾

𝐼

Needs checking

17

The CellML Text code for the potassium ion channel model is as follows32:

Potassium_ion_channel.cellml

def model potassium_ion_channel as

 def unit millisec as
 unit second {pref: milli};
 enddef;

 def unit per_millisec as
 unit second {pref: milli, expo: -1};
 enddef;

 def unit millivolt as
 unit volt {pref: milli};
 enddef;

 def unit per_millivolt as
 unit millivolt {expo: -1};

 enddef;

 def unit per_millivolt_millisec as
 unit per_millivolt;
 unit per_millisec;

 enddef;

 def unit microA_per_cm2 as
 unit ampere {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;

 def unit milliS_per_cm2 as
 unit siemens {pref: milli};
 unit metre {pref: centi, expo: -2};
 enddef;
 def unit mM as
 unit mole {pref: milli};
 enddef;

def comp environment as
 var V: millivolt { pub: out};
 var t: millisec {pub: out};
 V = sel
 case (t > 5 {millisec}) and (t < 15 {millisec}):
 -85.0 {millivolt};
 otherwise:
 0.0 {millivolt};
 endsel;
 enddef;

 def group as encapsulation for
 comp potassium_channel incl
 comp potassium_channel_n_gate;
 endcomp;
 enddef;

 def comp potassium_channel as
 var V: millivolt {pub: in , priv: out};
 var t: millisec {pub: in, priv: out};
 var n: dimensionless {priv: in};
 var i_K: microA_per_cm2 {pub: out};
 var g_K: milliS_per_cm2 {init: 36};
 var Ko: mM {init: 3};
 var Ki: mM {init: 90};
 var RTF: millivolt {init: 25};
 var E_K: millivolt;
 var K_conductance: milliS_per_cm2 {pub: out};

 E_K=RTF*ln(Ko/Ki);
 K_conductance = g_K*pow(n, 4{dimensionless});
 i_K = K_conductance*(V-E_K);
 enddef;

32

 From here on we use a coloured background to identify code blocks that relate to a particular CellML
construct: units, components, mappings and encapsulation groups and later imports.

Define
voltage step

Define units

Define component ‘environment’

Define component ‘potassium channel’

Define encapsulation of n_gate

18

 def comp potassium_channel_n_gate as
 var V: millivolt {pub: in};
 var t: millisec {pub: in};
 var n: dimensionless {init: 0.325, pub: out};
 var alpha_n: per_millisec;
 var beta_n: per_millisec;
 alpha_n = 0.01{per_millivolt_millisec}*(V+10{millivolt})
 /(exp((V+10{millivolt})/10{millivolt})-1{dimensionless});
 beta_n = 0.125{per_millisec}*exp(V/80{millivolt});
 ode(n, t) = alpha_n*(1{dimensionless}-n)-beta_n*n;
 enddef;

 def map between environment and potassium_channel for
 vars V and V;
 vars t and t;
 enddef;
 def map between potassium_channel and potassium_channel_n_gate for
 vars V and V;
 vars t and t;
 vars n and n;
 enddef;

enddef;

Note that several other features have been added:

 the event control select case which indicates that the voltage is specified to jump from 0mV
to -85mV at t=5ms then back to 0mV at t=15ms. This is only used here in order to test the K
channel model; when the potassium_channel component is later imported into a neuron
model, the environment component is not imported.

 the use of encapsulation to embed the potassium_channel_n_gate inside the
potassium_channel. This avoids the need to establish mappings from environment to
potassium_channel_n_gate since the gate component is entirely within the channel
component.

 the use of * + and * + to indicate which variables are either supplied as inputs to
a component or produced as outputs from a component33. Any variables not labelled as in or
out are local variables or parameters defined and used only within that component. Public
(and private) interfaces are discussed in more detail in the next section.

We now use OpenCOR, with Ending point 40 and Point interval 0.1, to solve the equations for the
potassium channel under a voltage step condition in which the membrane voltage is clamped
initially at 0mV and then stepped down to -85mV for 10ms before being returned to 0mV. At 0mV,

the steady state value of the n gate is

 0.324 and, at -85mV, 0.945.

The voltage traces are shown at the top of Figure 21. The n-gate response, shown next, is to open
further from its partially open value of 0.324 at 0mV and then plateau at an almost fully open
state of 0.945 at the Nernst potential -85mV before closing again as the voltage is stepped back
to 0mV. Note that the gate opening behaviour (set by the voltage dependence of the opening
rate constant) is faster than the closing behaviour (set by the voltage dependence of the closing
rate constant). The channel conductance () is shown next – note the initial s-shaped
conductance increase caused by the (four gates in series) effect on conductance. Finally the
channel current conductance x () is shown at the bottom. Because the voltage is
clamped at the Nernst potential (-85mV) during the period when the gate is opening, there is no
current flow, but when the voltage is stepped back to 0mV, the open gates begin to close and the

33

 Note that a later version of CellML will remove the terms in and out since it is now thought that the direction
of information flow should not be constrained.

Define mappings between components for
variables that are shared between these
components

Define component ‘potassium channel n gate’

19

conductance declines but now there is a voltage gradient to drive an outward (positive) current flow
through the partially open channel – albeit brief since the channel is closing.

Figure 21. Kinetics of the potassium channel gates for a voltage step from 0mV to -85mV. The voltage clamp
step is shown at the top, then the n gate first order response, then the channel conductance, then the channel
current. Notice how the conductance is slightly slower to turn on (due to the four gates in series) but fast to
inactivate. Current only flows when there is a non-zero conductance and a non-zero voltage gradient. This is
called the ‘tail current’.

Note that the CellML Text code above includes the Nernst equation with its dependence on the
concentrations , - = 90mM and , - = 3mM. Try raising the external potassium concentration to
, - = 10mM – you will then see the Nernst potential increase from -85mV to -55mV and a negative
(inward) current flowing during the period when the membrane voltage is clamped to -85mV. The
cell is now in a ‘hyperpolarised’ state because the potential is less than the equilibrium potential.

Note that you can change a model parameter such as , - either by changing the value in the left
hand Parameters window (which leaves the file unchanged) or by editing the CellML Text code
(which does change the file when you save from CellML Text view – which you have to do to see the
effect of that change.

This potassium channel model will be used later, along with a sodium channel model and a leakage
channel model, to form the Hodgkin-Huxley neuron model, where the membrane ion channel
current flows are coupled to the equations governing current flow along the axon to generate an
action potential.

𝑽(𝒕)

𝒏(𝒕)

𝒄𝒐𝒏𝒅𝒖𝒄𝒕𝒂𝒏𝒄𝒆(𝒕)

𝒊𝑲(𝒕)

20

9. A model of the sodium channel: Introducing CellML encapsulation and interfaces

The HH sodium channel has two types of gate, an gate (of which there are 3) that is initially closed
() before activating and inactivating back to the closed state, and an gate that is initially open
() before activating and inactivating back to the open state. The short period when both types
of gate are open allows a brief window current to pass through the channel. Therefore,

 ()

where 120 mS.cm-2, and with , - = 30mM and , - = 140mM, the Nernst potential for
the sodium channel (z=1) is

, -
, -

 .

The gating kinetics are described by

 () ;

 ()

where the voltage dependence of these four rate constants is determined experimentally to be34

 ()

 ()

;
 ()

 ;
 ()

 ;

 ()

.

Before we construct a CellML model of the sodium channel, we first introduce some further CellML
concepts that help deal with the complexity of biological models: first the use of encapsulation
groups and public and private interfaces to control the visibility of information in modular CellML
components. To understand encapsulation, it is useful to use the terms ‘parent’, ‘child’ and ‘sibling’.

We define the CellML components sodium_channel_m_gate
and sodium_channel_h_gate below. Each of these components
has its own equations (voltage-dependent gates and first
order gate kinetics) but they are both parts of one protein –
the sodium channel – and it is useful to group them into one
sodium_channel component as shown on the right:

We can then talk about the sodium channel as the parent of two children: the m gate and the h gate,
which are therefore siblings. A private interface allows a parent to talk to its children and a public
interface allows siblings to talk among themselves and to their parents (see Figure 22).

Figure 22. Children talk to each other as siblings, and to their parents, via public interfaces. But the outside
world can only talk to children through their parents via a private interface. Note that the siblings m_gate and
h_gate could talk via a public interface but only if a mapping is established between them (not needed here).

34

 The HH paper used
 ()

()

;

 ;

 ;

()

 (see footnote on page 16).

def group as encapsulation for
 comp sodium_channel incl
 comp sodium_channel_m_gate;
 comp sodium_channel_h_gate;
 endcomp;
enddef;

Si
b

lin
gs

 c
o

m
m

u
n

ic
at

e
vi

a
p

u
b

lic
 in

te
rf

ac
e

Parents communicate with children
via private to public interface

sodium_channel

m_gate

h_gate

m: {priv: in} & {pub: out}

h: {priv: in} & {pub: out}

V, t: {priv: out} & {pub: in}

environment

V, t:
{pub: out}
{pub: in}

i_Na:
{pub: in}

{pub: out}

Si
b

lin
gs

 c
o

m
m

u
n

ic
at

e
vi

a
p

u
b

lic
 in

te
rf

ac
e

(b

u
t

n
o

t
u

se
d

 h
er

e)

21

The OpenCOR CellML Text for the HH sodium ion channel is given below.

Sodium_ion_channel.cellml

def model sodium_ion_channel as

 def unit millisec as
 unit second {pref: milli};
 enddef;
 def unit per_millisec as
 unit second {pref: milli, expo: -1};
 enddef;
 def unit millivolt as
 unit volt {pref: milli};
 enddef;
 def unit per_millivolt as
 unit millivolt {expo: -1};
 enddef;
 def unit per_millivolt_millisec as
 unit per_millivolt;
 unit per_millisec;
 enddef;
 def unit microA_per_cm2 as
 unit ampere {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;
 def unit milliS_per_cm2 as
 unit siemens {pref: milli};
 unit metre {pref: centi, expo: -2};
 enddef;
 def unit mM as
 unit mole {pref: milli};
 enddef;

 def comp environment as
 var V: millivolt {pub: out};
 var t: millisec {pub: out};
 V = sel
 case (t > 5 {millisec}) and (t < 15 {millisec}):
 -20.0 {millivolt};
 otherwise:
 -85.0 {millivolt};
 endsel;
 enddef;

 def group as encapsulation for
 comp sodium_channel incl
 comp sodium_channel_m_gate;
 comp sodium_channel_h_gate;
 endcomp;
 enddef;

 def comp sodium_channel as
 var V: millivolt {pub: in, priv: out};
 var t: millisec {pub: in, priv: out };
 var m: dimensionless {priv: in};
 var h: dimensionless {priv: in};
 var g_Na: milliS_per_cm2 {init: 120};
 var E_Na: millivolt {init: 35};
 var i_Na: microA_per_cm2 {pub: out};
 var Nao: mM {init: 140};
 var Nai: mM {init: 30};
 var RTF: millivolt {init: 25};
 var E_Na: millivolt;
 var Na_conductance: milliS_per_cm2 {pub: out};

 E_Na=RTF*ln(Nao/Nai);
 Na_conductance = g_Na*pow(m, 3{dimensionless})*h);
 i_Na= Na_conductance*(V-E_Na);
 enddef;

Define
voltage step

Define units

Define component ‘environment’

Define component ‘sodium channel’

Define encapsulation
of m_gate and h_gate

22

 def comp sodium_channel_m_gate a s
 var V: millivolt {pub: in};
 var t: millisec {pub: in};
 var alpha_m: per_millisec;
 var beta_m: per_millisec;
 var m: dimensionless {init: 0.05, pub: out};

 alpha_m = 0.1{per_millivolt_millisec}*(V+25{millivolt})
 /(exp((V+25{millivolt})/10{millivolt})-1{dimensionless});
 beta_m = 4{per_millisec}*exp(V/18{millivolt});

 ode(m, t) = alpha_m*(1{dimensionless}-m)-beta_m*m;
 enddef;

 def comp sodium_channel_h_gate as
 var V: millivolt {pub: in};
 var t: millisec {pub: in};
 var alpha_h: per_millisec;
 var beta_h: per_millisec;
 var h: dimensionless {init: 0.6, pub: out};

 alpha_h = 0.07{per_millisec}*exp(V/20{millivolt});
 beta_h = 1{per_millisec}/(exp((V+30{millivolt})/10{millivolt})+1{dimensionless});

 ode(h, t) = alpha_h*(1{dimensionless}-h)-beta_h*h;
 enddef;

 def map between environment and sodium_channel for
 vars V and V;
 vars t and t;
 enddef;
 def map between sodium_channel and sodium_channel_m_gate for
 vars V and V;
 vars t and t;
 vars m and m;
 enddef;
 def map between sodium_channel and sodium_channel_h_gate for
 vars V and V;
 vars t and t;
 vars h and h;
 enddef;

enddef;

The results of the OpenCOR computation, with Ending point 40 and Point interval 0.1, are shown in
Figure 23 with plots of (), (), (), () and () for voltage steps from (a) -85mV to
-20mV, (b) -85mV to 0mV and (c) -85mV to 20mV. There are several things to note:

(i) The kinetics of the m-gate are much faster than the h-gate.

(ii) The opening behaviour is faster as the voltage is stepped to higher values since

reduces with increasing V (see Figure 18).

(iii) The sodium channel conductance rises (activates) and then falls (inactivates) under a positive
voltage step from rest since the three m-gates turn on but the h-gate turns off and the
conductance is a product of these. Compare this with the potassium channel conductance
shown in Figure 21 which is only reduced back to zero by stepping the voltage back to its
resting value – i.e. deactivating it.

(iv) The only time current flows through the sodium channel is during the brief period when
the m-gate is rapidly opening and the much slower h-gate is beginning to close. A small
current flows during the reverse voltage step but this is at a time when the h-gate is now
firmly off so the magnitude is very small.

(v) The large sodium current is an inward current and hence negative.

Note that the bottom trace does not quite line up at t=0 because the values shown on the axes are
computed automatically and hence can take more or less space depending on their magnitude.

Define mappings between
components for variables that are
shared between these components

Define component
‘sodium channel h gate’

Define component
‘sodium channel m gate’

23

 Figure 23. Kinetics of the sodium channel gates for voltage steps to (a) -20mV, (b) 0mV, and (c) 20mV.

(a)

(b)

(c)

𝑽(𝒕)

𝒎(𝒕)

𝒉(𝒕)

𝒊𝑵𝒂(𝒕)

𝒈𝑵𝒂(𝒕)

𝑽(𝒕)

𝒎(𝒕)

𝒉(𝒕)

𝒊𝑵𝒂(𝒕)

𝒈𝑵𝒂(𝒕)

𝑽(𝒕)

𝒎(𝒕)

𝒉(𝒕)

𝒊𝑵𝒂(𝒕)

𝒈𝑵𝒂(𝒕)

-20V

0V

20V

24

10. A model of the nerve action potential: Introducing CellML imports

Here we describe the first (and most famous) model of nerve fibre electrophysiology based on the
membrane ion channels that we have discussed in the last two sections. This is the work by Alan
Hodgkin and Andrew Huxley in 1952 [10] that won them (together with John Eccles) the 1963 Noble
prize in Physiology or Medicine for "their discoveries concerning the ionic mechanisms involved in
excitation and inhibition in the peripheral and central portions of the nerve cell membrane".

Cable equation
The cable equation was developed in 189035 to predict the degradation of an electrical signal passing
along the transatlantic cable. It is derived as follows:

If the voltage is raised at the left hand end of the cable (shown
by the deep red in Figure 24), a current (A) will flow that

depends on the voltage gradient, given by

 (V.m-1) and the

resistance (.m-1), Ohm’s law gives

 . But if the

cable leaks current (A.m-1) per unit length of cable, conservation of current gives

 and

therefore, substituting for ,

.

/ . There are two sources of membrane current ,

one associated with the capacitance () of the membrane,

, and one associated

with holes or channels in the membrane, . Inserting these into the RHS gives

.

/

Rearranging gives the cable equation (for constant):

where all terms represent current density (current per membrane area) and have units of .

Action potentials
The cable equation can be used to model the propagation of an
action potential along a neuron or any other excitable cell. The
‘leak’ current is associated primarily with the inward movement
of sodium ions through the membrane ‘sodium channel’, giving
the inward membrane current , and the outward movement
of potassium ions through a membrane ‘potassium channel’,
giving the outward current (see Figure 25). A further small leak current ()
associated with chloride and other ions is also included.

When the membrane potential rises
due to axial current flow, the Na
channels open and the K channels close,
such that the membrane potential
moves towards the Nernst potential for
sodium. The subsequent decline of the
Na channel conductance and the
increasing K channel conductance as
the voltage drops rapidly repolarises
the membrane to its resting potential of
-85mV (see Figure 26).

35

 http://en.wikipedia.org/wiki/Cable_theory

Figure 24. Current flow in a leaky cable.
equation.

𝑖𝑚

𝑖𝑎 𝑉 𝑥

I(V) during upstroke

of action potential

(depolarisation)

field 𝐶(𝒙)

I(V) during repolarisation

I

V 30mV -85mV

Figure 26. Current-voltage trajectory during an action potential.

Injection of outward current pulse
pushes V to a threshold where Na channels
open to allow a large inward (-ve) current

I(V) for open K channel

I(V) for open Na channel

Figure 25. Current flow in a neuron.

𝑖𝐾 𝑖𝑁𝑎 𝑖𝐾

𝑉

25

We can neglect36 the term (

) (the rate of change of axial current along the cable) for the

present models since we assume the whole cell is clamped with an axially uniform potential. We can
therefore obtain the membrane potential by integrating the first order ODE

 () .

Figure 27. A schematic cell diagram describing the current flows across the
cell bilipid membrane that are captured in the Hodgkin-Huxley model. The
membrane ion channels are a sodium (Na

+
) channel, a potassium (K

+
)

channel, and a leakage (L) channel (for chloride and other ions) through
which the currents INa, IK and IL flow, respectively.

We use this example to demonstrate the importing feature of CellML. CellML imports are used to
bring a previously defined CellML model of a component into the new model (in this case the Na and
K channel components defined in the previous two sections, together with a leakage ion channel
model specified below). Note that importing a component brings the children components with it
along with their connections and units, but it does not bring the siblings of that component with it.

To establish a CellML model of the HH equations we first lay out the model components with their
public and private interfaces (Figure 28).

Figure 28. Overall structure of the HH CellML model showing the encapsulation hierarchy (purple), the CellML
model imports (blue) and the other key parts (units, components & mappings) of the top level CellML model.

The HH model is the top level model. The CellML Text code for the HH model, together with the
leakage_channel model, is given on the next page. The imported potassium_ion_channel model and
sodium_ion_channel model are unchanged from the previous sections

36

 This term is needed when determining the propagation of the action potential, including its wave speed.

Environment

Units

Imports

Groups

Mappings
V, t:
{pub: out}
{pub: in}

Membrane

Sodium
channel

h_gate

m_gate
m: {priv: in} & {pub: out}

h: {priv: in} & {pub: out}

V, t: {priv: out} & {pub: in}
Na

channel
Import

Potassium
channel

n_gate
n: {priv: in} & {pub: out}

V, t: {priv: out} & {pub: in}

K
channel

Import

Leakage
channel

L
channel

Import

En
ca

p
su

la
te

sodium_ion_channel.cellml

potassium_ion_channel.cellml

leakage_ion_channel.cellml

HH.cellml

26

HH.cellml

def model HH as

 def import using "sodium_ion_channel.cellml" for
 comp Na_channel using comp sodium_channel;
 enddef;
 def import using "potassium_ion_channel.cellml" for
 comp K_channel using comp potassium_channel;
 enddef;
 def import using "leakage_ion_channel.cellml" for
 comp L_channel using comp leakage_channel;
 enddef;

 def unit millisec as
 unit second {pref: milli};
 enddef;
 def unit millivolt as
 unit volt {pref: milli};
 enddef;
 def unit microA_per_cm2 as
 unit ampere {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;
 def unit microF_per_cm2 as
 unit farad {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;

 def group as encapsulation for
 comp membrane incl
 comp Na_channel;
 comp K_channel;
 comp L_channel;
 endcomp;
 enddef;

 def comp environment as
 var V: millivolt {init: -85, pub: out};
 var t: millisec {pub: out};
 enddef;

 def map between environment and membrane for
 vars V and V;
 vars t and t;
 enddef;
 def map between membrane and Na_channel for
 vars V and V;
 vars t and t;
 vars i_Na and i_Na;
 enddef;
 def map between membrane and K_channel for
 vars V and V;
 vars t and t;
 vars i_K and i_K;
 enddef;
 def map between membrane and L_channel for
 vars V and V;
 vars i_L and i_L;
 enddef;

 def comp membrane as
 var V: millivolt {pub: in, priv: out};
 var t: millisec {pub: in, priv: out};
 var i_Na: microA_per_cm2 {pub: out, priv: in};
 var i_K: microA_per_cm2 {pub: out, priv: in};
 var i_L: microA_per_cm2 {pub: out, priv: in};
 var Cm: microF_per_cm2 {init: 1};
 var i_Stim: microA_per_cm2;
 var i_Tot: microA_per_cm2;

 i_Stim = sel
 case (t >= 1{millisec}) and (t <= 1.2{millisec}):
 100{microA_per_cm2};
 otherwise:
 0{microA_per_cm2};
 endsel;

 i_Tot = i_Stim + i_Na + i_K + i_L;
 ode(V,t) = -i_Tot/Cm;
 enddef;

enddef;

Leakage_ion_channel.cellml

def model leakage_ion_channel as

 def unit millisec as
 unit second {pref: milli};
 enddef;
 def unit millivolt as
 unit volt {pref: milli};
 enddef;
 def unit per_millivolt as
 unit millivolt {expo: -1};
 enddef;
 def unit microA_per_cm2 as
 unit ampere {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;
 def unit milliS_per_cm2 as
 unit siemens {pref: milli};
 unit metre {pref: centi, expo: -2};
 enddef;

 def comp environment as
 var V: millivolt {init: 0, pub: out};
 var t: millisec {pub: out};
 enddef;

 def map between leakage_channel and environment for
 vars V and V;
 enddef;

 def comp leakage_channel as
 var V: millivolt {pub: in};
 var i_L: microA_per_cm2 {pub: out};
 var g_L: milliS_per_cm2 {init: 0.3};
 var E_L: millivolt {init: -54.4};
 i_L = g_L*(V-E_L);
 enddef;

enddef;

Note that the CellML Text code for the
potassium and sodium channel modules
imported here is given on pages 17 and 21,
respectively.

27

Note that the only units that need to be defined for this top level HH model are the ones explicitly
required for the membrane component. All the other units, required for the various imported sub-
models, are imported along with the imported components.

The results generated by the HH model are shown in Figure 29.

Figure 29. Results from OpenCOR for the Hodgkin Huxley (HH) CellML model. The top panel shows the
generated action potential. Note that the stimulus current is not really needed as the background outward
leakage current is enough to drive the membrane potential up to the threshold for sodium channel opening.

𝒊𝑵𝒂(𝒕) 𝒊𝑲(𝒕) 𝒊𝑳 𝒊𝒔𝒕𝒊𝒎

𝑽(𝒕)

𝒊𝑵𝒂(𝒕)

𝒊𝑲(𝒕)

𝒊𝒔𝒕𝒊𝒎(𝒕)

28

Important note

It is often convenient to have the sub-models – in this case the sodium_ion_channel.cellml model,
the potassium_ion_channel.cellml model and the leakage_ion_channel.cellml model - loaded into
OpenCOR at the same time as the high level model (HH.cellml), as shown in Figure 30. If you make
changes to a model in the CellML Text view, you must save the file (CTRL-S) before running a new
simulation since the simulator works with the saved model. Furthermore, a change to a sub-model
will only affect the high level model which imports it if you also save the high level model (or use the
Reload option under the File menu). An asterisk appears next to the name of a file when a change
has been made and the file has not been saved. The asterisk disappears when the file is saved.

Figure 30. The HH.cellml model and its three sub-models are available under separate tabs in OpenCOR.

11. A model of the cardiac action potential: Importing units and parameters

We now examine the Noble 1962 model [12] that applied the Hodgkin-Huxley approach to cardiac
cells and thereby initiated the development of a long line of cardiac cell models that, in their human
cell formulation, are now used clinically and are the most sophisticated models of any cell type. It
was the incorporation of these models into whole heart bioengineering models that initiated the
Physiome Project. We also illustrate the use of imported units and imported parameter sets.

Cardiac cells have similar gradients of potassium and sodium ions that operate in a similar way to
neurons (as do all electrically active cells). There is one major difference, however, in the potassium
channel that holds the cells in their resting state at -85mV (HH neuron) or -100mV (cardiac Purkinje
cells). This difference is illustrated in Figure 31a. When the membrane potential is raised above the
equilibrium potential for potassium, the cardiac channel conductance shown by the dashed line
drops to nearly zero – i.e. it is an inward rectifier since it rectifies (‘cuts off’) the outward current that
otherwise would have flowed through the channel at that potential. This is an evolutionary
adaptation of the potassium channel to avoid loss of potassium ions out of the cell during the long
plateau phase of the cardiac action potential (Figure 31b) needed to give the heart time to contract.
This evolutionary change saves the additional energy that would otherwise be needed to pump
potassium ions back into the cell, but this Faustian “pact with the devil” is also the reason the heart
is so susceptible to conduction failure (more on this later). To explain his data on Purkinje cells Noble
[12] postulated the existence of two inward rectifier potassium channels, one with a conductance
 that showed voltage dependence but no significant time dependence and another with
conductance that showed less severe rectification with time dependent gating similar to the HH
four-gated potassium channel.

 (a) (b)

Figure 31. Current-voltage relations (a) around the equilibrium potentials for the potassium and sodium
channels in cardiac cells. The sodium channel is similar to the one in neurons but the two potassium channels
have an inward rectifying property that stops leakage of potassium ions out of the cell when the membrane
potential (illustrated in (b)) is high during the plateau phase of the cardiac action potential.

I

V 30mV -100mV

I(V) for open K channels

Rectification

V

-100mV

30mV

t

Plateau

𝒊𝑲𝟏

𝒊𝑲𝟐

29

To model the cardiac action potential in Purkinje fibres (a cardiac cell specialised for rapid
conduction from the atrio-ventricular node to the apical ventricular myocardial tissue), Noble [12]
proposed two potassium channels (one of these being the inwardly rectifying potassium channel
described above and the other called the delayed potassium channel), one sodium channel (very
similar to the HH neuronal sodium channel) and one leakage channel (also similar to the HH one).

The equations for these are as follows: (as for the HH model, time is in ms, voltages are in mV,

concentrations are in mM, conductances are in mS, currents are in A and capacitance is in F).

Inward rectifying potassium channel (voltage dependent only)

 (), with

, -
, -

 .

 ()

()

Inward rectifying potassium channel (voltage and time dependent)37

 ().

 () , where

 ()

 ()

 and
 ()

 .

Note that the rate constants here reflect a much slower onset of the time dependent change in
conductance than in the HH potassium channel.

Sodium channel

 ()(), with

, -
, -

 .

 where

 () , where

 ()

 ()

 and
 ()

()

 () , where

 ()

 and

 ()

Leakage channel

 (), with and .

Membrane equation

 () where .38

Figure 32 shows the structure of the model, including separate files for units, parameters, and the
three ion channels (the two potassium channels are lumped together). We include the Nernst
equations dependence on potassium and sodium ion concentrations in order to demonstrate the
use of parameter values, defined in a separate parameters file, that are read in at the top (whole cell
model) level and passed down to the individual ion channel models.

37

 The second inwardly rectifying channel model was later replaced with two currents and , so that
modern cardiac cell models do not include but they do include the inward rectifier (see later section).
38

 The Purkinje fibre membrane capacitance is 12 times higher than that found for squid axon. The use of

F ensures unit consistency with ms, mV and A since F is equivalent to C.V
-1

 or s.A.V
-1

 and therefore A/F or

A/(ms.A. mV
-1

) on the RHS matches mV/ms on the LHS).

30

Figure 32. Overall structure of the Noble62 CellML model showing the encapsulation hierarchy (purple), the
CellML model imports (blue) and the other key parts (units, components & mappings) of the top level CellML
model. Note that the overall structure of the Noble62 model differs from that of the earlier HH model in that
all units are defined in a units file and imported where needed (shown by the red arrows). Also the ion
concentration parameters are defined in a parameters file and imported into the top level file but passed
down to the modules that use them via the mappings.

The CellML Text code for all six files is shown on the following two pages. The arrows indicate the
imports (appropriately colour coded for units, components, and parameters).

Graphical outputs from solution of the Noble 1962 model with OpenCOR for 5000ms are shown in
Figure 33. Interpretation of the model outputs is given in the Figure 33 legend. The Noble62 model
was developed further by Noble and others to include additional sodium and potassium channels,
calcium channels (needed for excitation-contraction coupling), chloride channels and various ion
exchange mechanisms (Na/Ca, Na/H), co-transporters (Na/Cl, K/Cl) and energy (ATP)-dependent
pumps (Na/K, Ca) needed to model the observed beat by beat changes in intracellular ion
concentrations. These are discussed further in Section 15.

Environment

Groups

Imports

Units

Units_for_Noble62.xml

Parameters

Parameters_for_Noble62.xml

Mappings
V, t:
{pub: out}
{pub: in}

Membrane

Sodium
channel

h_gate

m_gate
m: {priv: in} & {pub: out}

h: {priv: in} & {pub: out}

V, t: {priv: out} & {pub: in}
Na

channel
Import

Potassium
channel

n_gate
n: {priv: in} & {pub: out}

V, t: {priv: out} & {pub: in}

K
channel

Import

Leakage
channel

L
channel

Import

En
ca

p
su

la
te

Noble62_Na_channel.xml

Noble62_K_channel.xml

Noble62_L_channel.xml

Noble_1962.cellml

31

Noble_1962.cellml
def model Noble_1962 as
 def import using "Noble62_Na_channel.xml" for
 comp Na_channel using comp sodium_channel;
 enddef;
 def import using "Noble62_K_channel.xml" for
 comp K_channel using comp potassium_channel;
 enddef;
 def import using "Noble62_L_channel.xml" for
 comp L_channel using comp leakage_channel;
 enddef;
 def import using "Units_for_Noble62.xml" for
 unit mV using unit mV;
 unit ms using unit ms;
 unit nanoF using unit nanoF;
 unit nanoA using unit nanoA;
 enddef;
 def import using "Parameters_for_Noble62.xml" for
 comp parameters using comp parameters;
 enddef;

 def map between parameters and membrane for
 vars Ki and Ki;
 vars Ko and Ko;
 vars Nai and Nai;
 vars Nao and Nao;
 enddef;

 def comp environment as
 var t: ms {init: 0, pub: out};
 enddef;

 def group as encapsulation for
 comp membrane incl
 comp Na_channel;
 comp K_channel;
 comp L_channel;
 endcomp;
 enddef;

 def comp membrane as
 var V: mV {init: -85, pub: out, priv: out};
 var t: ms {pub: in, priv: out};
 var Cm: nanoF {init: 12000};
 var Ki: mM {pub: in, priv: out};
 var Ko: mM {pub: in, priv: out};
 var Nai: mM {pub: in, priv: out};
 var Nao: mM {pub: in, priv: out};
 var i_Na: nanoA {pub: out, priv: in};
 var i_K: nanoA {pub: out, priv: in};
 var i_L: nanoA {pub: out, priv: in};
 ode(V, t) = -(i_Na+i_K+i_L)/Cm;
 enddef;

 def map between environment and membrane for
 vars t and t;
 enddef;
 def map between membrane and Na_channel for
 vars V and V;
 vars t and t;
 vars Nai and Nai;
 vars Nao and Nao;
 vars i_Na and i_Na;
 enddef;
 def map between membrane and K_channel for
 vars V and V;
 vars t and t;
 vars Ki and Ki;
 vars Ko and Ko;
 vars i_K and i_K;
 enddef;
 def map between membrane and L_channel for
 vars V and V;
 vars i_L and i_L;
 enddef;
enddef;

Units_for_Noble62.xml
def model units_for_Noble62 as
 def unit ms as
 unit second {pref: milli};
 enddef;
 def unit per_ms as
 unit second {pref: milli, expo: -1};
 enddef;
 def unit mV as
 unit volt {pref: milli};
 enddef;
 def unit mM as
 unit mole {pref: milli};
 enddef;
 def unit per_mV as
 unit volt {pref: milli, expo: -1};
 enddef;
 def unit per_mV_ms as
 unit mV {expo: -1};
 unit ms {expo: -1};
 enddef;
 def unit microS as
 unit siemens {pref: micro};
 enddef;
 def unit nanoF as
 unit farad {pref: nano};
 enddef;
 def unit nanoA as
 unit ampere {pref: nano};
 enddef;
enddef;

Parameters_for_Noble62.xml
def model parameters_for_Noble62 as
 def import using "units_for_Noble62.xml" for
 unit mM using unit mM;
 enddef;

 def comp parameters as
 var Ki: mM {init: 140, pub: out};
 var Ko: mM {init: 2.5, pub: out};
 var Nai: mM {init: 30, pub: out};
 var Nao: mM {init: 140, pub: out};
 enddef;
enddef;

Noble62_L_channel.xml
def model leakage_ion_channel as
 def import using "Units_for_Noble62.xml" for
 unit mV using unit mV;
 unit ms using unit ms;
 unit microS using unit microS;
 unit nanoA using unit nanoA;
 enddef;

 def comp leakage_channel as
 var V: mV {pub: in};
 var g_L: microS {init: 75};
 var E_L: mV {init: -60};
 var i_L: nanoA {pub: out};
 i_L = g_L*(V-E_L);
 enddef;
enddef;

32

Noble62_Na_channel.xml
def model sodium_ion_channel as
 def import using "Units_for_Noble62.xml" for
 unit mV using unit mV;
 unit ms using unit ms;
 unit mM using unit mM;
 unit per_ms using unit per_ms;
 unit per_mV using unit per_mV;
 unit per_mV_ms using unit per_mV_ms;
 unit microS using unit microS;
 unit nanoA using unit nanoA;
 enddef;

 def group as encapsulation for
 comp sodium_channel incl
 comp sodium_channel_m_gate;
 comp sodium_channel_h_gate;
 endcomp;
 enddef;

 def comp sodium_channel as
 var V: mV {pub: in, priv: out};
 var t: ms {pub: in, priv: out};
 var g_Na_max: microS {init: 400000};
 var g_Na: microS;
 var E_Na: mV;
 var m: dimensionless {priv: in};
 var h: dimensionless {priv: in};
 var Nai: mM {pub: in};
 var Nao: mM {pub: in};
 var RTF: mV {init: 25};
 var i_Na: nanoA {pub: out};
 E_Na = RTF*ln(Nao/Nai);
 g_Na = pow(m, 3{dimensionless})*h*g_Na_max;
 i_Na = (g_Na+140{microS})*(V-E_Na);
 enddef;

 def comp sodium_channel_m_gate as
 var V: mV {pub: in};
 var t: ms {pub: in};
 var m: dimensionless {init: 0.01, pub: out};
 var alpha_m: per_ms;
 var beta_m: per_ms;
 alpha_m = -0.10{per_mV_ms}*(V+48{mV})
 /(exp(-(V+48{mV})/15{mV})-1{dimensionless});
 beta_m = 0.12{per_mV_ms}*(V+8{mV})
 /(exp((V+8{mV})/5{mV})-1{dimensionless});
 ode(m, t)=alpha_m*(1{dimensionless}-m)-beta_m*m;
 enddef;

 def comp sodium_channel_h_gate as
 var V: mV {pub: in};
 var t: ms {pub: in};
 var h: dimensionless {init: 0.8, pub: out};
 var alpha_h: per_ms;
 var beta_h: per_ms;
 alpha_h = 0.17{per_ms}*exp(-(V+90{mV})/20{mV});
 beta_h = 1.00{per_ms}
 /(1{dimensionless}+exp(-(V+42{mV})/10{mV}));
 ode(h, t) = alpha_h*(1{dimensionless}-h)-beta_h*h;
 enddef;

 def map between sodium_channel
 and sodium_channel_m_gate for
 vars V and V;
 vars t and t;
 vars m and m;
 enddef;
 def map between sodium_channel
 and sodium_channel_h_gate for
 vars V and V;
 vars t and t;
 vars h and h;
 enddef;
enddef;

Noble62_K_channel.xml
def model potassium_ion_channel as
 def import using "Units_for_Noble62.xml" for
 unit mV using unit mV;
 unit ms using unit ms;
 unit mM using unit mM;
 unit per_ms using unit per_ms;
 unit per_mV using unit per_mV;
 unit per_mV_ms using unit per_mV_ms;
 unit microS using unit microS;
 unit nanoA using unit nanoA;
 enddef;

 def group as encapsulation for
 comp potassium_channel incl
 comp potassium_channel_n_gate;
 endcomp;
 enddef;

 def comp potassium_channel as
 var V: mV {pub: in, priv: out};
 var t: ms {pub: in, priv: out};
 var n: dimensionless {priv: in};
 var Ki: mM {pub: in};
 var Ko: mM {pub: in};
 var RTF: mV {init: 25};
 var E_K: mV;
 var g_K1: microS;
 var g_K2: microS;
 var i_K: nanoA {pub: out};
 E_K = RTF*ln(Ko/Ki);
 g_K1 = 1200{microS}*exp(-(V+90{mV})/50{mV})
 +15{microS}*exp((V+90{mV})/60{mV});
 g_K2 = 1200{microS}*pow(n, 4{dimensionless});
 i_K = (g_K1+g_K2)*(V-E_K);
 enddef;

 def comp potassium_channel_n_gate as
 var V: mV {pub: in};
 var t: ms {pub: in};
 var n: dimensionless {init: 0.01, pub: out};
 var alpha_n: per_ms;
 var beta_n: per_ms;
 alpha_n = -0.0001{per_mV_ms}*(V+50{mV})
 /(exp(-(V+50{mV})/10{mV})-1{dimensionless});
 beta_n = 0.0020{per_ms}*exp(-(V+90{mV})/80{mV});
 ode(n,t)= alpha_n*(1{dimensionless}-n)-beta_n*n;
 enddef;

 def map between environment
 and potassium_channel for
 vars V and V;
 vars t and t;
 enddef;
 def map between potassium_channel and
 potassium_channel_n_gate for
 vars V and V;
 vars t and t;
 vars n and n;
 enddef;
enddef;

33

Figure 33. Output from the Noble62 model. Top panel is (), the cardiac action potential. The next panel has
the two membrane ion channel currents () and (). Note that () has a very brief downward (i.e.
inward current) spike that is triggered when the membrane voltage reaches about -70mV. This is caused by the
huge increase in sodium channel conductance () shown in the panel below associated with the
simultaneous opening of the m-gate and closing of the h-gate (5

th
 panel down). The resting state of about

-80mV in the top panel is set by the potassium equilibrium (Nernst) potential via the open potassium channels.
As can be seen from the 4

th
 and bottom panels, it is the closing of the time-dependent potassium n-gate and

the corresponding decline of potassium conductance that, with a small background leakage current (),
leads to the membrane potential rising from -80mV to the threshold for activation of the sodium channel (note
the dotted red line showing the point when n(t) reaches a minimum). Later cardiac cell models include
additional ion channels that directly affect the heart rate by controlling this rise.

The ability to build hierarchical models, as we have illustrated here, is a feature of CellML 1.1.
However, if you want the entire model in one file, under the Tools menu there is an option CellML
File Export To … CellML 1.0 which creates this – called a ‘flattened’ version of the model.

We have now covered all the basic features of CellML and OpenCOR and have established 'best
practice' for building CellML models, including encapsulation of sub-components and a modular
approach in which units, parameters and model components are defined in separate files that are
imported into a composite model. We now turn to annotation of a CellML model.

𝑽(𝒕)

𝒊𝑵𝒂(𝒕)

𝒊𝑲(𝒕)

𝒈𝑵𝒂(𝒕)

𝒈𝑲𝟏(𝒕)

𝒈𝑲𝟐(𝒕)

𝒉 𝒎

𝒏

Threshold

34

12. Model annotation

One of the most powerful features of CellML is its ability to import models. This means that complex
models can be built up by combining previously defined models. There is a potential problem with
this process, however, since the imported models (often developed by completely different
modellers) may represent the same biological or biophysical entity with different expressions. The
potassium channel model in Section 8, for example, represents the intracellular concentration of
potassium as ‘Ki’ (see the CellML Text code on page 17) but another model involving the intracellular
potassium concentration may use a different expression.

The solution to this dilemma is to annotate the CellML variables with names from controlled
vocabularies that have been agreed upon by the relevant scientific community. In this case we may
simply want to annotate Ki as ‘the concentration of potassium in the cytosol’. This expression,
however, refers to three distinct entities: concentration, potassium and cytosol. We might also want
to specify that we are referring to the cytosol of a neuron … and that the neuron comes from a
particular part of a giant squid (the experimental animal used by Hodgkin and Huxley). Annotations
can clearly get very complicated!

What comes to our rescue here is that most scientific communities have developed controlled
vocabularies together with the relationships between the terms of that vocabulary – called
ontologies. Furthermore relationships can always be expressed in the form subject-predicate-object.
E.g. Ki is-the-concentration-of potassium is one relationship and potassium in-the cytosol is
another. Each object can become the subject of another expression. We could continue, for
example, with cytosol of-the neuron, neuron of-the squid and so on. The terms is-the-
concentration-of, in-the and of-the are the predicates and these semantically rich expressions too
have to come from controlled vocabularies. Each of these subject-predicate-object expressions is
called an RDF triple and the World Wide Web consortium39 has established a framework called the
Resource Description Framework (RDF40) to support these.

CellML models therefore contain two parts, one dealing with syntax (the MathML definition of the
models together with the structure of components, connections, groups, units, etc) as discussed in
previous sections, and one dealing with semantics (the meanings of the terms used in the models)
discussed in this section41. This latter is also referred to as metadata – i.e. data about data.

In the CellML metadata specification42 the first RDF subject of a triple is a CellML element (e.g. a
variable such as ‘Ki’), the RDF predicate is chosen from the Biomodels Biological Qualifiers43 list, and
the RDF object is a URI (the string of characters used to identify the name of a resource44).
Establishing these RDF links to biological and biophysical meaning is the goal of annotation.

Note the different types of subject/object used in the RDF triples: the concentration is a biophysical
entity, potassium is a chemical entity, the cytosol is an anatomical entity. In fact, to cover all the
terminology used in the models, CellML uses five separate ontologies:

 ChEBI (Chemical Entities of Biological Interest) www.ebi.ac.uk/chebi

 GO (Gene Ontology) www.geneontology.org

 FMA (Foundation Model of Anatomy) fma.biostr.washington.edu/projects/fm/

 Cell type ontology code.google.com/p/cell-ontology

 OPB sbp.bhi.washington.edu/projects/the-ontology-of-physics-for-biology-opb

These ontologies are available through OpenCOR’s annotation facilities as explained below.

39

 Referred to as W3C – see www.w3.org
40

 www.w3.org/RDF
41

 For details on the annotation plugin see opencor.ws/user/plugins/editing/CellMLAnnotationView.html
42

 See www.cellml.org/specifications/metadata/ and www.cellml.org/specifications/metadata/mcdraft
43

 http://co.mbine.org/standards/qualifiers
44

 http://en.wikipedia.org/wiki/Uniform_resource_identifier

http://www.ebi.ac.uk/chebi
http://www.geneontology.org/
http://sig.biostr.washington.edu/projects/fm/
https://code.google.com/p/cell-ontology
http://sbp.bhi.washington.edu/projects/the-ontology-of-physics-for-biology-opb
http://www.w3.org/
http://www.w3.org/RDF
http://www.opencor.ws/user/plugins/editing/CellMLAnnotationView.html
http://www.cellml.org/specifications/metadata/
http://www.cellml.org/specifications/metadata/mcdraft
http://co.mbine.org/standards/qualifiers
http://en.wikipedia.org/wiki/Uniform_resource_identifier

35

If we now go back to the potassium ion
channel CellML model and, under Editing, click
on CellML Annotation, the various elements of
the model (Units, Components, Variables,
Groups and Connections) are displayed (see
Figure 34). If you right click on any of them a
popup menu will appear, which you can use to
expand/collapse all the child nodes, as well as
remove the metadata associated with the
current CellML element or the whole CellML
file. Expanding Components lists all the
components and their variables. To annotate
the potassium channel component, select it
and specify a Qualifier from the list displayed:

 bio:encodes, bio:isPropertyOf
bio:hasPart, bio:isVersionOf
bio:hasProperty, bio:occursIn
bio:hasVersion, bio:hasTaxon
bio:is, model:is
bio:isDescribedBy, model:isDerivedFrom
bio:isEncodedBy, model:isDescribedBy
bio:isHomologTo, model:isInstanceOf
bio:isPartOf, model:hasInstance

If you do not know which qualifier to use, click on the button to get some information about the
current qualifier (you must be connected to the internet) and go through the list of qualifiers until
you find the one that best suits your needs. Here, we will say that you want to use bio:isVersionOf.
Figure 35 shows the information displayed about this qualifier.

Figure 35. The qualifiers are displayed from the top right menu. Clicking on the most appropriate one

(bio:isVersionOf) gives more information about this qualifier in the bottom panel.

Figure 34. Clicking on CellML Annotation lists the CellML
components with their variables ready for annotation.

36

Now you need to retrieve some possible ontological terms to describe the potassium_channel
component. For this you must enter a search term, which in our case is ‘potassium channel’ (note
that regular expressions are supported45). This returns 24 possible ontological terms as shown in
Figure 36. The voltage-gated potassium channel complex is the most appropriate. Clicking on the GO
identifier link shown provides more information about this term (see Figure 37).

Figure 36. The ontological terms listed when ‘potassium channel’ is entered into the search box next to Term.

Figure 37. The qualifier, resource & ID information in the middle panel appears when you click on the button
next to the selected term in Fig.32. GO identifier details are listed when either of the arrowed links are clicked.

45

 http://en.wikipedia.org/wiki/Regular_expression

http://en.wikipedia.org/wiki/Regular_expression

37

Now, assuming that you are happy with your choice of ontological term, you can associate it with
the potassium_channel component by clicking on its corresponding button which then displays the
qualifier, resource and ID information in the middle panel as shown in Figure 36. If you make a
mistake, this can be removed by clicking on the button.

The first level annotation of the potassium_channel component has now been achieved. The content
of the three terms in the RDF triple are shown in Figure 38, along with the annotation for the
variables Ki and Ko.

Figure 38. The RDF triple used in CellML metadata to link a CellML element (component or variable) with an
ontological term from one of the five ontologies accessed via identifiers.org, using a predicate qualifier from
BioModels.net. The three examples of annotated CellML model elements shown are for (1) the
potassium_channel component (this points to a GO identifier), (2) the variable Ki, and (3) the variable Ko.
These two variables are defined within the potassium_channel component of the model and point to CHEBI
identifiers. A further annotation is needed to identify the cellular location of those variables (since one is
intracellular and one is extracellular).

When saved (the CellML Annotation tag will
appear un-grayed), the result of these
annotations is to add metadata to the CellML
file. If you switch to the CellML Text view you
will see that the elements that have been
annotated appear with ID numbers, as shown
here on the right. These point to the
corresponding metadata contained in the
CellML file for this model and are displayed
under the qualifier-resource-Id headings in the
annotation window when you click on the element in the editing window.

Note that the three annotations added above are all biological annotations. Many of the other
components and variables in the CellML potassium channel model deal with biophysical entities and
these require the use of the OPB ontology (yet to be implemented in OpenCOR). The use of
composite annotations is also being developed46, such as “Ki is-the concentration of potassium in-
the cytosol of-the neuron of-the giant-squid”, where concentration, potassium, cytosol, neuron and
giant-squid are defined by the ontologies OPB, ChEBI, GO, FMA and a species ontology, respectively.

46

 This is a project being carried out at the University of Washington, Seattle, using an annotation tool called
SEMGEN (…).

(1)

(2)

(3)

Subject

(CellML element)

Predicate

(BioModels.net qualifier)

qualifier

Object

(Ontological term with identifiers.org URI)

potassium_channel isVersionOf voltage-gated potassium channel complex

GO:0008076

Ki isVersionOf potassium(1+)

CHEBI:29103

Ko isVersionOf potassium(1+)

CHEBI:29103

http://www.identifiers.org/
http://biomodels.net/qualifiers/
http://biomodels.net/qualifiers/
http://www.identifiers.org/

38

13. The Physiome Model Repository and the link to bioinformatics

The Physiome Model Repository (PMR) [13] is the main online repository for the IUPS Physiome
Project, providing version and access controlled repositories, called workspaces, for users to store
their data. Currently there are approximately 640 public workspaces and another 200 private
workspaces in the repository. PMR also provides a mechanism to create persistent access to specific
revisions of a workspace, termed exposures. Exposure plugins are available for specific types of data
(e.g. CellML or FieldML documents) which enable customizable views of the data when browsing the
repository via a web browser, or an application accessing the repository’s content via web services.

The CellML project website and the CellML Physiome Model Repository are shown in Figures 39, 40.

Figure 39. The website for the CellML project at www.cellml.org.

Figure 40. The website for the Physiome Model Repository project at www.cellml.org/tools/pmr.

http://www.cellml.org/
http://www.cellml.org/tools/pmr

39

The CellML models on models.physiomeproject.org are listed under 20 categories, shown below:
(numbers of exposures in each category are given besides the bar graph)

Browse by category

 Calcium Dynamics 140

 Cardiovascular Circulation 60

 Cell Cycle 38

 Cell Migration 2

 Circadian Rhythms 22

 Electrophysiology 230

 Endocrine 60

 Excitation-Contraction Coupling 22

 Gene Regulation 12

 Hepatology 29

 Immunology 55

 Ion transport 13

 Mechanical Constitutive Laws 19

 Metabolism 86

 Myofilament Mechanics 22

 Neurobiology 33

 pH regulation 2

 PKPD 11

 Signal Transduction 120

 Synthetic Biology 6

Note that searching of models can be done anywhere on the site using the search box on the upper
right hand corner. An important benefit of ensuring that the models on the PMR are annotated is
that models can then be retrieved by a web-search using any of the annotated terms in the models.

To illustrate the features of PMR, click on the Hund, Rudy 2004 (Basic) model in the alphabetic listing
of models under Electrophysiology. This opens a web page (Figure 41) using a 32 character string
that has been randomly generated as the ID for the exposure page for that model.

Figure 41. The Physiome Model Repository exposure page for the basic Hund-Rudy 2004 model.

https://models.physiomeproject.org/

40

Note that the string is still unique even with only 5 characters:
e.g. https://models.physiomeproject.org/exposure/f4b71/hund_rudy_2004_a.cellml/view

The section labelled ‘Model Structure’ contains the journal paper abstract and often a diagram of
the model47. This is shown for the Hund-Rudy 2004 model in Figure 42. This model, with over 22
separate protein model components, is also a good example of why it is important to build models
from modular components [14], and in particular the individual ion channels for electrophysiology
models.

Figure 42. A diagrammatic representation of the Hund-Rudy 2004 model.

There is a list of ‘Views Available’ for the CellMLmodel on the lower right hand side of the exposure
page. The function of each of these views is as follows:

Views Available

Documentation - Takes you to the main exposure page.

Model Metadata - Lists metadata including authors, title, journal, Pubmed ID and model annotations.

Model Curation - Provides the curation status of the model. Note: this is soon to be updated.

Mathematics - Displays all the mathematical equations contained in the model.

Generated Code - Creates code (C, C-IDA, F77, MATLAB or Python) for the model.

Cite this model - Provides details on how to cite use of the CellML model.

Source view - Gives a full listing of the XML code for the model.

Simulate using OpenCell - This will be OpenCOR once the SED-ML API is included in OpenCOR.

Note that CellML models are available under a Creative Commons Attribution 3.0 Unported
License48. This means that you are free to:

 Share — copy and redistribute the material in any medium or format

 Adapt — remix, transform, and build upon the material
for any purpose, including commercial use.

47

 These are currently hand drawn SVG diagrams but the plan is to automatically generate them from the
model annotation and also (at some stage!) to animate them as the model is executed.
48

 https://creativecommons.org/licenses/by/3.0/

https://models.physiomeproject.org/exposure/f4b71/hund_rudy_2004_a.cellml/view

41

The next stage of content development for PMR is to provide a list of the modular components of
these models each with their own exposure. For example, models for each of the individual ion
channels used in the publication-based electrophysiological models will be available as standalone
models that can then be imported as appropriate into a new composite model. Similarly for enzymes
in metabolic pathways and signalling complexes in signalling pathways, etc. Some examples of these
protein modules are:

Sodium/hydrogen exchanger 3 https://models.physiomeproject.org/e/236/
Thiazide-sensitive Na-Cl cotransporter https://models.physiomeproject.org/e/231/
Sodium/glucose cotransporter 1 https://models.physiomeproject.org/e/232/
Sodium/glucose cotransporter 2 https://models.physiomeproject.org/e/233/

Note that in each case, as well as the CellML-encoded mathematical model, links are provided (see
Figure 43) to the UniProt Knowledgebase for that protein, and to the Foundational Model of
Anatomy (FMA) ontology (via the EMBLE-EBI Ontology Lookup Service) for information about tissue
regions relevant to the expression of that protein (e.g. Proximal convoluted tubule, Apical plasma
membrane; Epithelial cell of proximal tubule; Proximal straight tubule). Similar facilities are available
for SMBL-encoded biochemical reaction models through the Biomodels database [15].

Figure 43. The PMR workspace for the Thiazide-sensitive Na-Cl cotransporter. Bioinformatic data for this
model is accessed via the links under the headings highlight by the arrows and include Protein (labelled A) and
the model Location (labelled B). Other information is as already described for the Hund-Rudy 2004 model.

A
B

https://models.physiomeproject.org/e/236/
https://models.physiomeproject.org/e/231/
https://models.physiomeproject.org/e/232/
https://models.physiomeproject.org/e/233/

42

14. Speed comparisons with MATLAB

Solution speed is important for complex computational models and here we compare the
performance of OpenCOR with MATLAB49. Nine representative CellML models were chosen from
the PMR model repository. For the MATLAB tests we used the MATLAB code, generated
automatically from CellML, that is available on the PMR site. These comparisons are based on using
the default solvers (listed below) available in the two packages.

Testing environment

 MacBook Pro (Retina, Mid 2012).
 Processor: 2.6 GHz Intel Core i7.
 Memory: 16 GB 1600 MHz DDR3.
 Operating system: OS X Yosemite 10.10.3.

OpenCOR

 Version: 0.4.1.
 Solver: CVODE with its default settings, except for its Maximum step parameter, which is set

to the model's stimulation duration, if needed.

MATLAB

 Version: R2013a.
 Solver: ode15s (i.e. a solver suitable for stiff problems and which has low to medium order of

accuracy) with both its RelTol and AbsTol parameters set to 1e-7 and its MaxStep parameter
set to the stimulation duration, if needed.

Testing protocol

 Run a model for a given simulation duration.
 Generate simulation data every milliseconds.
 Only keep track of all the simulation data (i.e. no graphical output).
 Run a model 7 times, discard the 2 slowest runs (to account for unpredictable slowdowns of

the testing machine) and average the resulting computational times.
 Computational times are obtained directly from OpenCOR and MATLAB (through a couple of

calls to cputime in the case of MATLAB).

Results

CellML model
(from PMR on 18/6/2015)

Duration
(s)

OpenCOR time
(s)

MATLAB time
(s)

Time ratio
(MATLAB/OpenCOR)

Bondarenko et al. 2004 10 1.16 140.14 121

Courtemanche et al. 1998 * 100 0.998 45.720 46

Faber & Rudy 2000 50 0.717 29.010 40

Garny et al. 2003 100 0.996 48.180 48

Luo & Rudy 1991* 200 0.666 70.070 105

Noble 1962 1000 1.42 310.02 218

Noble et al. 1998 100 0.834 42.010 50

Nygren et al. 1998 100 0.824 31.370 38

ten Tusscher & Panfilov 2006 100 0.969 59.080 61

*
The value of membrane.stim_end was increased so as to get action potentials for the duration of the simulation

Conclusions

For this range of tests, OpenCOR is between 38 and 218 times faster than MATLAB.
A more extensive evaluation of these results is available on GitHub50.

49

 www.mathworks.com/products/matlab
50

 https://github.com/opencor/speedcomparison. These tests were carried out by Alan Garny.

http://www.opencor.ws/
http://www.mathworks.com/products/matlab/
http://models.cellml.org/e/41
http://models.cellml.org/exposure/0e03bbe01606be5811691f9d5de10b65
http://models.cellml.org/exposure/55643f2114a2a463ada007deb9fc3913
http://models.cellml.org/exposure/d71105df45dd7030b3c99b2b1e95b8c0
http://models.cellml.org/exposure/2d2ce7737b42a4f72d6bf8b67f6eb5a2
http://models.cellml.org/exposure/812eeafbc8ebe97bef435340c80cfcce
http://models.cellml.org/exposure/a40c4434423c0436e2789a2d457b7ab2
http://models.cellml.org/exposure/ad761ce160f3b4077bbae7a004c229e3
http://models.cellml.org/exposure/a7179d94365ff0c9c0e6eb7c6a787d3d
http://www.mathworks.com/products/matlab
https://github.com/opencor/speedcomparison

43

15. SED-ML, functional curation and Web Lab

In the same way that CellML models can be defined unambiguously, and shared easily, in a machine-
readable format, there is a need to do the same thing with 'protocols' – i.e. to define what you have
to do to replicate/simulate an experiment, and to analyse the results. An XML standard for this
called SED-ML51 is being developed by the CellML/SBML community and the API for SED-ML will
implemented in the next full version release of OpenCOR in order to allow precise and reproducible
control over the OpenCOR simulation and graphical output. This will also facilitate the curation of
models according to their functional behaviour under a range of experimental scenarios.

The key idea behind functional curation is that, when mathematical and computational models are
being developed, a primary goal should be the continuous comparison of those models against
experimental data. When computational models are being re-used in new studies, it is similarly
important to check that they behave appropriately in the new situation to which you're applying
them. To achieve this goal, a pre-requisite is to be able to replicate in-silico precisely the same
protocols used in an experiment of interest. A language for describing rich 'virtual experiment'
protocols and software for running these on compatible models is being developed in the
Computational Biology Group at Oxford University52.

An online system called Web Lab53 is also being developed that supports definition of experimental
protocols for cardiac electrophysiology, and allows any CellML model to be tested under these
protocols [16]. This enables comparison of the behaviours of cellular models under different
experimental protocols: both to characterise a model’s behaviour, and comparing hypotheses by
seeing how different models react under the same protocol (Figure 44).

Figure 44. A schematic of the way we organise model and protocol descriptions. Web Lab provides an interface
to a Model/Protocol Simulator, storing and displaying the results for cardiac electrophysiology models.
(Adapted from [16]).

The Web Lab website provides tools for comparing how two different cardiac electrophysiology
models behave under the same experimental protocols. Note that Web Lab demonstration for
CellML models of cardiac electrophysiology is a prototype for a more general approach to defining
simulation protocols for all CellML models.

51

 The ‘Simulation Experiment Description Markup Language’: sed-ml.org
52

 travis.cs.ox.ac.uk/FunctionalCuration/about.html This initiative is led by Jonathan Cooper and Gary Mirams.
53

 travis.cs.ox.ac.uk/FunctionalCuration.

http://sed-ml.org/
https://travis.cs.ox.ac.uk/FunctionalCuration
https://travis.cs.ox.ac.uk/FunctionalCuration

44

16. Future developments

Both CellML and OpenCOR are continuing to be developed. These notes will be updated to reflect
new features of both. The next release of OpenCOR (0.5) will include

 the SED-ML API which means that all the variables controlling the simulation and its output
can be specified in a file for that simulation

 the BioSignalML API which will allow experimental data to be read into OpenCOR in a
standardised way

 colour plots, to better distinguish overlapping traces in the output windows

Priorities for later releases of OpenCOR include the incorporation of GIT into OpenCOR to enable the
upload of models to PMR, graphical rendering of the model structure (using SVG), model building
templates, such as templates for creating Markov models, tools for parameter estimation and tools
for analysing model outputs.

The next release of CellML (1.2) will include the ability to specify a probability distribution for a
parameter value. Together with SED-ML, this will allow OpenCOR to generate error bounds on the
solutions, corresponding to the specified parameter uncertainty.

These notes are currently being extended to include

 a discussion of system identification and parameter estimation

 more extensive discussion of membrane protein models along the lines of the discussion on
page 41 of Section 13, and the creation of a PMR library of these models

 CellML modules for signal transduction pathways

45

References
1. Garny A and Hunter PJ. OpenCOR: OpenCOR: a modular and interoperable approach to

computational biology. Frontiers in Physiology 6, 26 (2015).
2. Cuellar AA, Lloyd CM, Nielsen PF, Halstead MDB, Bullivant DP, Nickerson DP and Hunter PJ.

An overview of CellML 1.1, a biological model description language. SIMULATION: Transactions
of the Society for Modeling and Simulation 79(12):740-747, 2003

3. Yu T et al. The Physiome Model Repository 2. Bioinformatics 27, 743–744, 2011.

4. Hunter PJ. The IUPS Physiome Project: a framework for computational physiology. Progress in
Biophysics and Molecular Biology 85, 551–569, 2004.

5. See www.cellml.org/about/publications for a more extensive list of publications on CellML and
OpenCOR.

6. Christie R, Nielsen PMF, Blackett S, Bradley C and Hunter PJ. FieldML: concepts and
implementation. Philosophical Transactions of the Royal Society (London) A367(1895):1869-
1884, 2009.

7. Britten RD, Christie GR, Little C, Miller AK, Bradley C, Wu A, Yu T, Hunter P, Nielsen P. FieldML, a
proposed open standard for the Physiome project for mathematical model representation. Med
Biol Eng Comput 51(11), 1191-1207, 2013.

8. Hunter PJ et al. A vision and strategy for the virtual physiological human: 2012 update. Interface
Focus 3, 2013. http://journal.frontiersin.org/article/10.3389/fphys.2015.00026/abstract

9. Thompson JMT and Stewart HB. Nonlinear Dynamics and Chaos, 2nd Edn. Wiley, 2002.
10. Hodgkin AL and Huxley AF. A quantitative description of membrane current and its application to

conduction and excitation in nerve. Journal of Physiology 117, 500-544, 1952. PubMed ID:
12991237

11. Wigglesworth J. ‘Energy and Life’, Taylor & Francis Ltd, 1997.
12. Noble D. A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and

pace-maker potentials. Journal of Physiology 160, 317-352, 1962.

13. Lloyd CM, Lawson JR, Hunter PJ and Nielsen PF. The CellML Model Repository. Bioinformatics 24,
2122-2123, 2008.

14. Cooling M, Hunter PJ and Crampin EJ. Modeling biological modularity with CellML. IET Systems
Biology 2(2):73-79, 2008.

15. www.biomodels.org
16. Cooper J, Vik JO, Waltemath D. A call for virtual experiments: Accelerating the scientific process.

Progress in Biophysics and Molecular Biology 117, 99–106, 2015.

http://www.cellml.org/about/publications
http://journal.frontiersin.org/article/10.3389/fphys.2015.00026/abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=12991237&query_hl=1&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=12991237&query_hl=1&itool=pubmed_docsum
http://www.biomodels.org/

