

PMR2 Tutorial
Authors:

Dougal Cowan
Randall Britten

1

1 Contents

1 Contents ... 1

2 About this tutorial .. 2

3 PMR2 concepts ... 2

4 Working with the PMR2 web interface .. 3

4.1 Model listings .. 3

4.2 Searching the repository ... 4

5 Working with PMR2 using Mercurial.. 5

5.1 Registering an account and logging in ... 5

5.2 Cloning an existing workspace... 5

5.3 Mercurial username configuration .. 7

5.4 Making changes to workspace contents ... 8

5.5 Committing changes .. 9

5.6 Pushing changes to the repository .. 10

6 Making an exposure using "roll-over" .. 11

7 Become a Mercurial power user .. 13

7.1 Pulling and merging ... 13

7.2 Sharing changes on a local network .. 14

8 Creating a new workspace ... 14

8.1 Adding files to the new workspace.. 15

8.2 Making an exposure from scratch ... 16

2

Auckland Bioengineering Institute PMR2 Tutorial

2 About this tutorial

The CellML repository is powered by software called Physiome Model Repository 2 (PMR2). PMR2 currently
relies on the distributed version control system Mercurial (Hg), which allows the repository to maintain a
complete history of all changes made to every file it contains. This tutorial demonstrates how to work with
the repository using TortoiseHg, which provides a Windows explorer integrated system for working with
Mercurial repositories.

Brief mention of the equivalent command line versions of the TortoiseHg actions will
also be mentioned, so that these ideas can also be used without a graphical client, and
on Linux and similar systems. These will be denoted by grayed boxes like this.

You will need to have TortoiseHg, OpenCell, and access to both a live and a non-live PMR2 model repository
instance in order to go through this tutorial.

TortoiseHg: http://tortoisehg.bitbucket.org/
OpenCell: http://www.cellml.org/

3 PMR2 concepts

PMR2 and the CellML model repository use a certain amount of jargon - some is specific to the repository
software, and some is related to distributed version control systems (DVCSs). Below are basic explanations
of some of these terms as they apply to the repository.

Workspace: A container (much like a folder or directory on your computer) to hold the files that make up a
model, as well as any other files such as documentation or metadata, etc. In practical terms, each
workspace is a Mercurial repository.

Exposure: An exposure is a publically viewable presentation of a particular revision of a model. An exposure
can present one or many files from your workspace, along with documentation and other information
about your model.

The Mercurial DVCS has a range of terms that are useful to know, and definitions of these terms can be
found in the Mercurial glossary: http://mercurial.selenic.com/wiki/Glossary.

http://www.cellml.org/
http://mercurial.selenic.com/wiki/Glossary

3

4 Working with the PMR2 web interface

This part of the tutorial will teach you how to find models in a live instance of PMR2, commonly called the
"CellML repository" (http://models.cellml.org), how to view a range of information about those models,
and how to download models. The first page in the repository consists of basic navigation, a link to the main
model listing, a search box at the top right, and a list of model category links as shown below.

4.1 Model listings

Clicking on the main model listing or any of
the category listings will take you to a page
displaying a list of exposed models in that
category. Click on electrophysiology for
example, and a list of over 100 exposed
models in that category will be displayed, as
shown here.

Clicking on an item in the list will take you to
the exposure page for that model.

4

4.2 Searching the repository

You can search for the model that you wish to work on by entering a search term in the box at the top right
of the page. Many of the models in the repository are named by the first author and publication date of the
paper, so good search query might be something like "goldbeter 1991". A list of the results of your search
will probably contain both workspaces and exposures - you will need to click on the workspace of the model
you wish to work on. Workspaces can be identified because their links are pale blue and have no details line
following the clickable link. In the following screenshot, the first two results are workspaces, and the
remainder are exposures.

Click on an exposure result to view information about the model and to get links for downloading or simulating

the model. Click on workspaces to see the contents of the model workspace and the revision history of the

model.

5

5 Working with PMR2 using Mercurial

This part of the tutorial will teach you how to clone a workspace from the model repository using a
Mercurial client, create your own workspace, and then push the cloned workspace into your new
workspace in the repository. We will be using a non-live temporary instance of the repository for this part
of the tutorial, so there is no need to worry about messing up the contents of the real repository.

5.1 Registering an account and logging in

First, navigate to the temporary model repository at http://bioeng77.bioeng.auckland.ac.nz:7380/pmr.

The home page of the temporary repository is different to the main CellML model repository - it has no
category listings, and instead it repeatedly lists the same exposure.

In order to make changes to models in the CellML repository, you must first register for an account. The
"Log in" and "Register" links can be found near the top right corner of the page. Your account will have the
appropriate access privileges so that you can push any changes you have made to a model back into the
repository.

Click on the Register link near the top right, and fill in the registration form. Enter your username and
desired password. You can now log in to the repository. This username and password are also the
credentials you use to interact with the repository via Mercurial. Note that compared to registering for the
real CellML repository, this process is somewhat streamlined for the purposes of this tutorial.

Once logged in to the repository, you will notice that there is a new link in the navigation bar, User
Workspace. This is where all the workspaces you create later on will be listed. The Log in and Register links
are also replaced by your username and a Log out link.

5.2 Cloning an existing workspace

It is essential to use a Mercurial client to obtain models from the repository for editing. The Mercurial client
is not only able to keep track of all the changes you make (allowing you to back-track if you make any
errors), but using a Mercurial client is the only way to add any changes you have made back into the
repository.

http://bioeng77.bioeng.auckland.ac.nz:7380/pmr

6

You will be allocated your own workspace for the tutorial. It already has a revision history and some
exposures. To see a list of all the workspaces, click on "Workspace". Then click on the workspace that has
been allocated to you for the tutorial.

Now copy the URI for Mercurial clone/pull/push. This can be done in Firefox by right-clicking on the link and
selecting Copy Link Location from the context menu.

Next, use your Mercurial client to clone the workspace using the URI you just copied. Cloning the workspace
will create a local repository containing a copy of the entire contents and change history of the cloned
workspace in a folder on your computer.

In Windows explorer, find the folder where you want to create the clone of the workspace. Then right click
to bring up the context menu, and select TortoiseHG > Clone… as shown below:

7

Paste the copied URL into the Source path: area, and enter the directory name of the workspace (in this
case beeler_reuter_1977) onto the end of the directory path where you chose to clone the workspace.

Click the Clone button. This will create a clone of the workspace onto your local machine - the files will look
something like the screenshot below, with overlays on the icons showing the Mercurial status of the files.

Command line equivalent: hg clone URL

5.3 Mercurial username configuration

IMPORTANT: Username setup for Mercurial
Since you are about to make changes, your name needs to be recorded as part of the workspace revision
history. When commit your changes using Mercurial, it is initially "offline" and independent of the central
PMR2 instance. This means that you have to set-up your username for the Mercurial client software, even
though you have registered a username on the PMR2 site.

You only need to do this once.

Steps:

8

Command line equivalent: edit config text file:
Config file location:
Per repository: "<repo>\.hg\hgrc"

System wide:
Linux: "%USERPROFILE%\.hgrc"
Windows: "%USERPROFILE%\mercurial.ini"

Entry:
[ui]

username = Firstname Lastname <firstname.lastname@example.net>

Replace underlined text with your details.

5.4 Making changes to workspace contents

Your cloned workspace is now ready for you to edit the model file and make a commit each time you want
to save the changes you have made. As an example, open the model file in Notepad++ and remove the
paragraph which describes validation errors from the documentation section, as shown below:

9

Save the file, and notice that the icon has changed to a red cross, indicating that the file now has
uncommitted changes.

5.5 Committing changes

Using the shell menu for the added file, select Hg Commit…. A window will appear showing details of the
changes you are about to commit, and prompting for a commit message. Every time you commit changes,
you should enter a useful commit message with information about what changes have been made. In this
instance, something like "Removed the paragraph about validation errors from the documentation" is
appropriate.

Click on the Commit button at the far left of the toolbar. The icon overlay for the file will now change to a
green tick, indicating that changes to the file have been committed.

Command line equivalent: hg commit -m "Removed the paragraph about validation
errors from the documentation"

10

5.6 Pushing changes to the repository

Your cloned workspace on your local machine now has a small history of changes which you wish to push
into the repository.

Right click on your workspace folder in Windows explorer, and select Hg Synchronize from the shell menu.
This will bring up a window from which you can manage changes to the workspace in PMR2. Click on the
Push button in the toolbar, and enter your username and password when prompted.

Command line equivalent: hg push

Now navigate to your workspace on the temporary repository, or refresh the page if you still have it open in
your browser. The workspace will now show entries under the Most recent changes, complete with the
commit messages you entered for each commit, as shown below:

11

6 Making an exposure using "roll-over"

As explained earlier, an exposure aims to bring a particular revision to the attention of users who are
browsing and searching the repository.

There are two ways of making an exposure. "Rolling over" an exposure is the method used when a
workspace already has an existing exposure, and the updates to the workspace have not fundamentally
changed the structure of the workspace. This means that all the information used in making the
previous exposure is still valid for making a new exposure of a more recent revision of the workspace

1
.

Steps:

1
 Strictly speaking, an exposure can be rolled over to an older revision as well, but this is not the usual

usage.

12

13

7 Become a Mercurial power user

7.1 Pulling and merging

If you are collaborating with others, you might find that they have pushed changes to the repository. To get
updates, you "pull". You can also clone your cloned workspace, and try out two different approaches, and
capture the revision history for both, and then merge them back if you ever want to.

Right click on the top level folder of your cloned workspace.
Click on Synchronize from the TortoiseHg menu.
Click "Pull".
You now have a copy of the revision history. However, the files that you work with are not up-to-date with
the latest version in that revision history. You need to do an "update" as well.
Right click again on the top level folder of your cloned workspace and choose TortoiseHg->update.

Command line equivalent:
hg pull
hg update

If both you and others have made changes, you might have to do a merge.
To demonstrate this, make a clone of your workspace in an adjacent directory. This is done the same way
as the clone you made earlier, but rather than the URL from PMR2, just use the path on your computer's
local storage to the workspace.

Make some dummy changes and commits separately in the original workspace and in the second cloned
workspace.

Now, from the second cloned workspace, do a pull.

You might see something like this in the log output from a pull:
added 1 changesets with 1 changes to 1 files (+1 heads)

(run 'hg heads' to see heads, 'hg merge' to merge)

The "+1 heads" means that there are now more head revisions (i.e. latest revisions).
To do a merge:
To do this, choose TortoiseHg->Repository Explorer.

The entry in bold text is the current working directory revision.
Right click on the other branch of the history, choose "Merge with".
If there are no conflicts, the Merge will be automatic, otherwise you will be prompted to edit text files and
choose which versions of the binary files to use.

Command line equivalent:
hg merge

14

7.2 Sharing changes on a local network

You can share your changes with others directly, even before you push them to the main repository.
Find a partner who is doing the tutorial. One of you activates a temporary web server for your workspace,
and the other can clone changes from it. This is a "pull" model, where your collaborators have to actively
retrieve your changes from your temporary web server.

Right click on a cloned workspace folder, and choose "TortoiseHg->Web Server", then select "Start".

A URL will be displayed. Ask your partner to clone from this URL.

They should then run the web server in the same way, and you can pull changes back into your workspace
from them. This allows collaboration independent of the central system, and is one of the key reasons for
using a DVCS. You can also mail revision histories. See the Mercurial documentation for details.

Command line equivalent: hg serve

8 Creating a new workspace

To create a new workspace for your own files, first click on the User Workspace navigation bar button, and
then click on your username folder link. You will now have a series of menus running along below the
navigation bar - actions, display, add new, and state. Click on the add new menu and select pmr2
workspace. You will be presented with a form requesting that you enter an ID, title, and description for your
new workspace. Only ID is required.

For workspaces based on published papers, the conventional ID scheme is first author, year, separated by
an underscore - for example, goldbeter_1991. You may give your workspace whatever ID you wish - then
click on the Add button.

Once you have added your new workspace, you will be presented with the standard view of the workspace.
This will show the summary information, the URI for Mercurial clone/pull/push, and the revision history
(Most recent changes) which will be empty.

15

8.1 Adding files to the new workspace

First, clone your new workspace just like you did earlier, using the URL for this new workspace. For this
tutorial, you can simply copy the model file from elsewhere, e.g. the beeler_reuter_1977 workspace into
your new workspace using Windows explorer. Then right click on the file you copied into your workspace,
and select TortoiseHg > Add Files… from the shell menu.

A window will appear showing a list of the files that can be added. Simply click the Add button to add the
model file to your repository. The icon overlay for the file will change to a blue cross, indicating that the file
has been added. Adding a file is a change to the repository, and you must now commit this change, using
the process described earlier, but with a useful commit comment.

You can now also push this change to the repository, again, using the same process as described earlier.

16

8.2 Making an exposure from scratch

Making an exposure is more complicated for this workspace, since it is a brand new workspace, and there is
not a previous exposure that can simply be rolled over.

Basically, the type of exposure is chosen, and then a form is completed selecting contents from the work
workspace for each part of the exposure, and filling out some details regarding the exposure.

This part of the tutorial has still to be written up, but will be demonstrated by one of the instructors.

