

Auckland Bioengineering Institute

CellML tutorial

Auckland Bioengineering Institute

tutorial

Auckland Bioengineering Institute

1

1 Contents

1 Contents .. 1

2 About this Tutorial ... 2

3 Creating a basic model in OpenCell .. 3

3.1 Starting a model .. 3

3.2 Creating a new CellML model ... 4

3.2.1 Making new components .. 5

3.2.2 Creating variables .. 5

3.2.3 Defining units .. 6

3.2.4 Creating equations ... 8

3.2.5 Creating connections ... 9

3.2.6 Validating the model ..10

3.2.7 Running a simulation ...10

4 Modifying Hodgkin & Huxley 1952 toward Noble 1962 ..12

4.1 Hodgkin-Huxley Model Structure ..12

4.2 Hodgkin-Huxley Model Validation ..13

4.2.1 Potassium Channel Kinetics Validation ...13

4.2.2 Action Potential Validation ..14

4.3 Modification toward Noble 1962 Model ...15

4.3.1 Examining the Mathematical Model ...15

4.3.2 Modifying the Parameters ...16

5 Ten Tusscher, Noble, Panfilov 2004 (TNNP) stimuli ..17

5.1 Periodic ..17

5.2 S1-S2 Restitution ..18

6 Conclusion ..19

2

Auckland Bioengineering Institute CellML

OpenCell Tutorial

All material is copyright Auckland Bioengineering Institute, unless otherwise stated. Please see
www.cellml.org for copyright and licensing statements.

2 About this Tutorial

This tutorial is divided into three parts. The first is designed to acquaint you with the CellML software
OpenCell, by guiding you through the process of creating a very simple model of a single chemical reaction.

The second and third parts of the tutorial emphasize the modularity, reuse, and exchange features that are
available when developing models in a CellML 1.1 framework. The focus of these parts of the tutorial is the
application of a CellML based modelling framework in the area of cardiac cellular electrophysiology.

The reference description can be browsed from the models.cellml.org a1 workspace:
http://models.cellml.org/workspace/a1/

For this tutorial, you will be provided with a folder containing the files required to complete the exercises.

3

3 Creating a basic model in OpenCell

This part of the tutorial will teach you how to create a simple, functional CellML model from scratch using
OpenCell, and how to display the results of simulating this model on a graph.

3.1 Starting a model

We'll begin by defining some equations and parameters that we would like to use CellML to describe. Let's
say we want to create a CellML model the simple chemical reaction shown below:

 ��
� � � � �
 ��

Using mass action kinetics, we might model this using the following equations:

� 	 ��
��.
�� �� .
��

�
��

��
	 �

�
��

��
	 �

�
��

��
	 �

Where [A], [B] and [C] are the concentrations of the reaction species, kf and kb are rate constants and J is a
flux.

To create this model in CellML, we will use two components: an environment component to contain the time
variable, and a flux component to contain the reaction. We will use seven variables: time, the reaction
species A, B, and C, the rate constants kf and kb, and the flux J. There will be a connection between the two
components to pass the time variable.

Although the best description of elements within a CellML model can be found within the CellML 1.1
Specification, a brief comment on components and connections is in order here.

Every variable in a CellML model is defined within a component. These components allow a modeller to
organize and group variables and equations into modules. There is no ordained way to do this, so a
modeller may in fact choose to create only one component and put everything in the model within it, but
usually the components represent discrete processes or entities within the model, such as protein
interactions in a signal transduction model. This is useful both because it keeps the model neat and aids
conceptualization, and because it facilitates the creation of reusable modules.

Connections allow the modeller to map variables within different components to each other. This means
that a variable may be defined by an equation in one component and mapped to another component to be
used. Because the derivative of each ODE in this model needs to be taken with respect to time, the variable
that tracks time needs to be defined once and mapped to each component.

When you first load OpenCell, it will look something like this (depending on your operating system and
monitor resolution):

4

The window is divided into four sections; the model selector pane, tree view pane, interaction pane, and the
graph pane. For more information about the OpenCell interface, refer to the manual - available from the
Help menu from within OpenCell.

3.2 Creating a new CellML model

Click on the first button on the toolbar (new model) or go to the File menu and select New. A window titled
Create new model will appear, asking for a name and a CellML version for your new model. Type in
tutorial_model, and select CellML 1.1 for the CellML version. Press enter, or click on OK. You will now
have a model called tutorial_model visible in the model selector pane.

Now switch to the show complete model
structure view in the tree view pane, using the
second button on the tree view pane toolbar.
This view is the main view you will use to edit
models in OpenCell.

You will see a list of items in the tree view pane;
Components, Groups, Connections, Units, and
Imports.

Click on the Save button (the diskette icon) or
select Save from the File menu. Give your file
the name tutorial_model.cellml and save it
in your chosen folder. Save regularly during this
tutorial.

5

3.2.1 Making new components

You are going to create two components; one called environment to contain the global variable time, and
another called flux to contain the variables and equations for the reaction.

To create a new component, right click on the green icon labelled
Components, and select New from the context menu. A
component called New_component will appear below
Components - select the name of this component, type in
environment (in place of New_component) and press enter. Now
create another component, and rename it to flux.

3.2.2 Creating variables

You will now create the variables for the model, within the appropriate components. First create the time
variable: right click on the environment component's icon in the tree view (the green rectangle with a C,
labelled environment) and select New variable from the context menu. Re-name the variable from
New_variable to time.

The other six variables should be created in the flux component. Create the variables A, B, C, kf, kb and J
under the flux component. Some of these variables will require initial values. These can be entered in the
Value field of the tree view. Enter values of 2, 3, and 0 for the variables A, B, and C respectively. These
values are the initial concentrations of these three species. The rate constant variables kf and kb should be
given values of 0.15 and 0.5.

You will also need to create the variable time in the flux component, which will later be connected to the
time variable in the environment component. Variables that are connected must appear in both of the
connected components.

6

3.2.3 Defining units

All variables and numbers in a CellML model must be associated with units. OpenCell has a library of pre-
defined units, which includes all base and derived SI units. First, associate the unit second with the time
variable - click on the Units field of the time variable in the tree view, and select second from the list of pre-
defined units.

The other units used in this model will have to be defined, as they do not appear in the list of pre-defined
units. The concentrations of the three reaction species are in units of micromoles per litre, or micromolar;
the flux will be in units of micromolar per second. The two reaction rates will have units of per micromolar
per second (for kf) and per second (for kb).

These units are made up of combinations of SI units, modified by prefixes, multipliers, offsets, and
exponents. For example, the unit micromolar is made up of mole with a prefix of -6 (micro) combined with
litre with an exponent of -1; micromoles per litre.

To define the unit micromolar, right click on the Units icon in the tree view and select New from the context
menu (1). Rename this unit uM, and make sure that the type of unit is Derived (2). Now right click on the icon
for uM and select New unit again from the context menu. Select mole from the list of units next to the yellow
triangular unit node icon (3). To make these micromoles, enter a value of -6 into the Prefix text field, or
select micro from the list of prefixes. Right click again on the uM icon, and select New unit again. For this
new unit, select litre from the list of pre-defined units. To make this per litre, enter a value of -1 into the
exponent field of the litre unit (4). When you now select the main unit node in the tree view, the unit
definition will be displayed in the information pane (5).

To define the remaining units follow the procedure above, using the components of each unit.

• The per_second unit is defined as a second unit with an exponent of

• uM_per_second is defined using

• per_uM_per_second is defined using
an exponent of -1.

This will give you the following unit definitions:

Now that you have defined all the required units, you can ass
units field of each variable, and select the appropriate unit for each of the variables.

A: uM
B: uM
C: uM
kf: per_uM_per_second
kb: per_second
J: uM_per_second

7

To define the remaining units follow the procedure above, using the components of each unit.

unit is defined as a second unit with an exponent of -1 .

is defined using uM combined with the second unit with an exponent of

is defined using uM with an exponent of -1, combined with the second unit with

This will give you the following unit definitions:

Now that you have defined all the required units, you can associate them with the variables. Click on the
units field of each variable, and select the appropriate unit for each of the variables.

To define the remaining units follow the procedure above, using the components of each unit.

with an exponent of -1.

1, combined with the second unit with

ociate them with the variables. Click on the

8

3.2.4 Creating equations

Now you will enter the model equations. These are created within the appropriate component, in this case
the flux component. Right click on the icon for the component in the tree view, and select New maths from
the context menu. An icon labelled Mathematics will appear - right click on it and select New equation from
the context menu. Click on the equation element, and in the text box (which will initially read <no operator
yet>) enter the following equation:

J=kf*A*B-kb*C

For the second, third, and fourth equations, create another equation and enter the following in the text box:

d(A)/d(time)=-J;

d(B)/d(time)=-J;

d(C)/d(time)=J;

OpenCell allows you to create multiple equations
at once by entering a number of equations
separated by semicolons. When you press enter,
the multiple equations will appear as separate
elements in the tree view. You may also enter your
equations directly into the Mathematics tree-view
element text box.

After you have entered the equations, selecting
them will cause a formatted version of the equation
to appear in the interaction pane below the tree
view. This will only work if you have entered an
equation in a way that OpenCell is able to
interpret. The input format is an editable form of
MathML and is similar to the format for a basic
command-line calculator tool.

It is worth noting that if you create equations without having first created the appropriate variables,
OpenCell will show errors when the model is validated. You can right click on these errors and select Add
variable to parent component to automatically fix these errors, creating the required variable elements
within the component that the equation is in. These automatically created variables will have no initial value
and their units will be set to dimensionless. You will have to edit these fields if required.

9

3.2.5 Creating connections

Finally, you will need to create a connection between the two components, to pass the time variable from
the environment component to the flux component. As we mentioned previously, connections allow
variables which have been defined in one component to be used within another component.

There are two ways to create connections in OpenCell. The easiest is to use the drag & drop method. To
connect time in environment to time in flux, simply hold down the control key, drag the environment
component, and drop it on the flux component. All of the common variables will be connected, which in this
case is only time.

Alternatively, you can create connections using the context menus in
the tree view. To create a connection, right click on the red Connections
icon in the tree view, and select New from the context menu. Expanding
the newly created connection will show you two items named
Component 1 and Component 2. Select environment and flux
respectively from the drop-down menus.

Now, right click on the connection labelled environment, flux and select
New variable mapping from the context menu. Expanding the new
variable mapping will show you two items labelled Variable 1 and
Variable 2. You want to map the variable time from the environment
component onto time from the flux component, so select time in both of
the fields.

For any newly created connection to function (created using either
method), the direction of the Public Interface of the time variables must
be set correctly for each component. Do this by first expanding the time
variable in the environment component, and then selecting Out from
the Public Interface drop-down menu. Setting up the interfaces can be
done before connections are created, at the time when the variables
are created.

In the same way, change the Public interface of the time variable in the
flux component to In. This sets the direction of the connection, as
shown in the information pane when a correctly created connection is
selected.

10

3.2.6 Validating the model

Validating the model will help you to identify and locate any errors you might
have made in building your model.

To validate the model, right click on the model name in the model selector
panel on the left, and select Validate from the context menu. If there are no
errors, a message will appear in the far right hand pane of the OpenCell
window, the graph pane.

If there were errors, messages will appear describing the errors
found. Double-clicking on the error messages will take you to the
part of the model where the error was detected. Take note that you
must be in the complete model structure view for this error
highlighting function to work correctly. Shown on the left is an
example of what these error messages might look like:

3.2.7 Running a simulation

Our model is now validated and ready to simulate. Save the model now, and then click on the Display
integration pane button (the last button on the toolbar, with the letters dt,) to make the integration pane
visible. You have to close and re-load the model before the integration pane becomes available. The
integration pane should look something like this:

Click on the large Integrate button, and wait until the message Integration complete appears in the
integration pane. The Integrate button will change to the Export CSV button. This button allows you to save
the results of the simulation as comma separated values, for loading into other applications. You now have
results for the model which you can display in the graph pane.

Right click in the graph trace control area in the graph pane, and select New Trace from the context menu.

11

A new trace entry will appear in the listing. Click on the X column where it says (click to select) and select
environment, time from the cascading menu. Do the same for the Y column and select flux, A.

A graph should now appear above, showing the concentration of A decaying over time to its equilibrium
value.

Add more traces to the graph - another way to add graph traces is to simply drag variables from the tree
view and drop them on the graph pane. Try doing this with the variables B, C, and J from the flux
component. Additional new traces will automatically have time selected as the X axis variable, although you
can of course change this if you wish by clicking on it and selecting a different variable. You should now
have a graph that looks something like this:

You can change the colour of individual traces by clicking on the coloured block in the graph controls and
selecting a colour from the pop up palette.

This concludes the first part of the tutorial. Please refer to the manual and other tutorials for more
information.

12

4 Modifying Hodgkin & Huxley 1952 toward Noble 1962

This part of the tutorial is a detailed guide to the modification of an existing “published” model which is
available on the internet. The example used is modifying the original Hodgkin & Huxley 1952 squid axon
model to produce action potentials closer to those found in the Noble 1962 model of cardiac cells.

This section of the tutorial illustrates the modularity and reuse aspects of CellML 1.1. An accurate
representation of the original Hodgkin & Huxley 1952 squid axon model has previously been published and
made available on a web server at NUS in Singapore.

In this task we first validate this implementation of the model and then modify it through the replacement of
the potassium current from a model available in the CellML model repository, and the slight modification of
some parameters. These modifications are sufficient to turn the short duration of a nerve action potential
into a long lasting cardiac action potential similar to the Noble 1962 cardiac Purkinje fibre action potential.

The basic premise of this example is based on the first biophysical cardiac cellular electrophysiology model,
published by Denis Noble in 1962. The Hodgkin-Huxley 1952 squid axon model is modified, such that it
becomes capable of reproducing the action and pacemaker potentials observed in Purkinje fibres. In this
tutorial we start with a CellML description of the Hodgkin-Huxley model and modify it to reproduce some of
the key features of the Noble 1962 model.

4.1 Hodgkin-Huxley Model Structure

The structure of the NUS implementation of the Hodgkin-Huxley model is illustrated in the figure below:

This diagram emphasizes the modular definition of the model using CellML 1.1. The mathematical model is
separated from the instantiation into a specific simulation experiment. Reuse is illustrated by the use of a
single definition of the standard Hodgkin-Huxley gating kinetics being reused for each of the m, h, and n
gating variables.

13

4.2 Hodgkin-Huxley Model Validation

The Hodgkin-Huxley model used here has been previously implemented and is available online from the
Computational Bioengineering Laboratory at the National University of Singapore. The original source of
these models is http://www.bioeng.nus.edu.sg/compbiolab/p3/. All the graphs illustrated here are
simulated directly from the data described on the NUS server. The following simulations serve to validate
this implementation by showing simulation observations which correspond directly to those published by
Hodgkin & Huxley (1952).

All references to files loaded in OpenCell are relative to the IUPS-2009-CellML-tutorial-models folder
extracted from the model archive (ROOT).

We describe below the steps for recreating two of the original validation studies provided under
http://www.bioeng.nus.edu.sg/compbiolab/p3.

4.2.1 Potassium Channel Kinetics Validation

We will perform a validation study, investigating the kinetics of the potassium channel of the base
implementation of the Hodgkin-Huxley model. Start OpenCell and load the model:

ROOT/NUS-HodgkinHuxley-Implementation/experiments/IK-gating-kinetics.xml.

The simulation metadata gets parsed (this sets up the settings in the integration settings panel) so you can
leave all of the integration settings as they are.

1. Click the Integrate button, and wait until the Integration Complete message appears.

2. Plot alpha_n and beta_n against membrane potential. To do this, right click in the area below the
graph panel, and select New Trace from the context menu. Click where it says click to select, and
select alpha_n/alpha for the Y axis, and ramp/y for the X axis (membrane potential is described in
the model mathematically as a linear ramp with a generic name, although imported as V).This
reproduces figure 4 from the Hodgkin & Huxley (1952) article, shown as the yellow and green traces
in the graph below.

3. Plot n_infinity against membrane potential. [membrane potential as above; n_infinity =
hh_gating_variable_steady_state/gate_inf (generic gating kinetics imported for each gate)]. This
reproduces Figure 5 from the HH (1952) article, shown as the cyan trace below.

4. Click the large Integrate button near the bottom centre of the OpenCell window in the integration
pane. The graph traces will appear as shown in the graph below, although the colours will be
different as they are randomly selected. You can choose the colour of a trace by clicking on the small
coloured box at the left of the trace settings, and selecting a new colour from the pop-up palette.

4.2.2 Action Potential Validation

We will perform a validation study investigating the dynamic response of the base implementation of the
Hodgkin & Huxley model to an applied electrical stimulus current.

5. Load the following model into
ROOT/NUS-HodgkinHuxley-Implementation/experiments/periodic

Once again, the simulation metadata gets

6. Plot action potentials [action_potential/minus_V

7. Plot currents [INa/INa vs
first variable can be plotted simply by changing the

8. Plot gating variables [all three of
shows the gating variables
Y variable on all 3 traces, or deleting the traces and creating them from scratch. Use the right mouse
button to zoom in on the graph in order to view a single action potential as shown below.

14

Action Potential Validation

alidation study investigating the dynamic response of the base implementation of the
Huxley model to an applied electrical stimulus current.

the following model into OpenCell:
Implementation/experiments/periodic-stimulus.xml

he simulation metadata gets parsed and you can just click Integrate

action_potential/minus_V vs time/time], as shown on graph A below.

vs time; IK/IK vs time; Ileak/Ileak vs time], as shown on graph B
first variable can be plotted simply by changing the Y variable to Ina/Ina for that trace.

Plot gating variables [all three of hh_gating_variable_dynamic/gate vs time]. The graph below
the gating variables n (cyan), m (yellow), and h (green). You can do this either by changing the

variable on all 3 traces, or deleting the traces and creating them from scratch. Use the right mouse
button to zoom in on the graph in order to view a single action potential as shown below.

alidation study investigating the dynamic response of the base implementation of the

ntegrate.

], as shown on graph A below.

shown on graph B below. The
for that trace.

. The graph below
You can do this either by changing the

variable on all 3 traces, or deleting the traces and creating them from scratch. Use the right mouse
button to zoom in on the graph in order to view a single action potential as shown below.

15

4.3 Modification toward Noble 1962 Model

This task defines the modifications made to the base HH implementation in order to approximate the action
potential shape of the Noble 1962 model. The figure below illustrates the model structure that we want to
develop:

In this figure, all the red models are defined “locally” and the rest come from the base implementation from
NUS, as described above. Within the local models, some of the components are imported from the base
NUS model and some are newly defined. All units are imported from the base NUS model implementation.
The major change to the mathematical model is to replace the Hodgkin & Huxley potassium channel with
one which is based on the potassium channel described by the Noble 1962 model. To achieve this, the
Noble potassium channel description has to be altered to reflect the modelling conventions used by
Hodgkin & Huxley.

4.3.1 Examining the Mathematical Model

Load the following model into OpenCell:

ROOT/models.cellml.org/workspace/a1/tutorial/modified-hh.xml

Ignore the message that says the model is unable to be integrated, and select the "show complete model
structure" tree view by clicking on the second icon on the tree view toolbar. You can now see the structure of
the actual mathematical model. Take a look at the imports elements, showing that the sodium and leakage
current are being imported from “NUS” and the potassium current is being imported locally.

16

4.3.2 Modifying the Parameters

Close and re-start OpenCell. Now load the following model into OpenCell:

ROOT/models.cellml.org/workspace/a1/tutorial/experiment-start.xml

In this example, the modified mathematical model is imported into a specific experiment model and all the
default parameter values and initial conditions are imported from the NUS model implementation. The
stimulus protocol parameters are defined locally to define a suitable stimulus protocol. Integrating this
model and plotting [action_potential/minus_V vs time] shows the altered action potentials which result
from the changes made to the potassium current formulation. At this point, click on the trace settings where
it says Link selected, and change this to Copy selected model. This will make this trace keep the original
model data once we create a clone.

We will now make the changes required to create the plateau-like phase in the action potential.

9. Clone the model by using the context menu on the model in the listing at the far left, and selecting
Clone. Select the new cloned model, which will be named with a timestamp.

10. Create a new component in the tree view (bring up the context menu on the Components element
icon and select New). Name this component parameters.

11. Create a new variable in the parameters component, called Cm. Give it a value of 12, and units of
uF_per_cmsq (predefined in the drop-down menu). Change the public interface to out.

12. Create another new variable in the parameters component, called gK_max. Give it a value of 12, and
units of mS_per_cmsq. Change the public interface to out.

13. Expand the model, default_parameters connection, and delete the variable mappings for Cm and
gK_max - these will be the first two, but you must expand them to see what the variable mapping
actually is.

14. Create a new connection (use the context menu on the Connections element) and connect the
components model and parameters using the drop-down selection boxes.

15. Create two new variable mappings within this new connection using the context menu on the model,
parameters element. Expand the two variable mappings. Select Cm in both variable 1 and variable 2
for the first mapping, and select gK_max for both in the second mapping.

16. Integrate your edited model, and graph the same variables [action_potential/minus_V vs time] as
for the original model. You should notice that the action potentials have the plateau-like phase, as
shown below on the cyan trace:

17

5 Ten Tusscher, Noble, Panfilov 2004 (TNNP) stimuli

The following part applies the same techniques as demonstrated in part 4 to a more realistic scenario,
namely that of modifying the stimulus protocol being applied to a human cardiac myocyte model.

In this section of the tutorial, we make use of an existing encoding of the ten Tusscher et al (2004) human
ventricular myocyte model which has a periodic stimulus current applied. We replace this stimulus protocol
with one suited for restitution analysis.

Nickerson & Buist (2008) (PBMB, Practical application of CellML 1.1...) published a study investigating the
practical application of CellML 1.1 based on the ten Tusscher et al (2004) human ventricular myocyte
electrophysiology model. The online supplement for this study is available at:

http://www.bioeng.nus.edu.sg/compbiolab/papers/nickerson-PBMB-2008/

This includes all the simulation experiment descriptions presented in that study. As for the Hodgkin-Huxley
example above, we first check that the base implementation available from the NUS server is correct and
then modify it with a new stimulus protocol.

5.1 Periodic

Close and re-start OpenCell. Now load the following model into OpenCell:

ROOT/NUS-TNNP-Implementation/papers/nickerson-PBMB-2008/experiments/TNNP-periodic.xml

1. Change the end time point to 10000 ms in the integration pane. Turn on tabulation control with a
tabulation interval of 1ms - the tabulation settings are in the Advanced settings tab of the integration
pane.

2. Create a trace for the action potentials; membrane_potential/V vs time/time. The list of components
and their variables in this model is very long, and you will have to scroll the list in order to find the
ones you need to graph.

3. Click the Integrate button.

18

5.2 S1-S2 Restitution

The Nickerson & Buist (2008) implementation of the ten Tusscher et al (2004) model includes the
description of the model with an applied S1-S2 stimulus protocol (10 stimuli with a fixed period followed by
a single stimulus at some interval after the 10

th
 periodic stimulus. This is a published and “fixed” set of

CellML encoded models which we are not able to change directly, but we would really like to use this model
with our own stimulus protocol description. Due to the modular nature of the model implementation
available from NUS this is relatively straightforward to achieve, by following these steps:

1. Create a new model in OpenCell by selecting New from the File menu, or by clicking on the New
model… button on the toolbar. Select CellML 1.1 as the version, and give the model the name S1S2.

2. Save the model to ROOT/my-S1S2.xml.

3. Create a new import, and enter the following in the text field:
NUS-TNNP-Implementation/papers/nickerson-PBMB-2008/experiments/TNNP-S1S2.xml

4. Create a new component in this import; enter model and interface into the two text fields.

5. Create another new import, and enter the following in the text field:
NUS-TNNP-Implementation/cellml/models/common/units.xml

6. Create a new units within this import; enter ms and ms into the two text fields.

7. Save your model again.

8. Create a new component in the top level model, with the name parameters.

9. Create a new variable within this new component, using the following settings:
name: basicCycleLength
value: 750
units: ms
public_interface: out

10. Create another new variable within the parameters component, using the following settings:
name: S2Interval
value: 500
units: ms
public_interface: out

11. Save your model again.

12. Create a new connection, expand it, and select parameters and model for the two components to
connect.

13. Create new variable mapping within this new connection, and select basicCycleLength for variable 1
and variable 2.

14. Create another new variable mapping, and select S2Interval for variable 1 and variable 2.

15. Save your model again!

16. Right click on your model in the model listing at the far left and select Reload. This should now
enable the integration of the model.

17. Set the tabulation control to on using the check box (in the Advanced settings tab), and set a
tabulation interval of 1ms.

18. Set the integration end time to 10000ms, and the maximum step size to 0.1ms.

19. Integrate the model, and plot the action potentials by creating a trace for membrane_potential/V vs
time/time.

20. Change the trace setting from Link selected to Copy selected model.

21. Right click on the model in the model listing and select Clone. Select this cloned model.

22. Edit the S2Interval variable value of this cloned model; change it to 1000 for example - now integrate
the cloned model, and create a trace of membrane_potential/V vs time/time.

23. Repeat steps 20, 21, and 22, but this time set the S2Interval to 400.

19

You should now have a graph that shows three action potential traces - the first 11 peaks should overlap,
and the last should be different between the three traces. Below is a graph showing these three traces,
where S2Interval has been set to 400ms (cyan), 750ms (yellow), and 1000ms (green).

6 Conclusion

In this tutorial we have introduced you to the basic concepts of CellML 1.1, in particular the modularity and
re-use features of the language. For further tutorials and information, please visit the getting started section
at http://www.cellml.org/getting-started/.

We encourage you to get involved with the CellML project via the mailing lists and the tracker. You will find
links to the mailing lists on the getting involved section of the website. You can discuss features of and
issues with the software on the CellML sections of the Physiome Tracker, at
https://tracker.physiomeproject.org/ .

