
Meeting Minutes 10 June 2003
Autumn A Cuellar

Table of Contents
Introduction ... 1
What happens to the model tree... ... 1
Importing the Entire Model ... 2
Miscellaneous .. 3

Introduction
Wow! We're already halfway through the year, and this is the first progress report of the year.
Someone's been slacking. Alright. First the update of what's been going on in the past six months. Team
CellML's main focus has been the development of the CellML ontologies. We've pretty much let Matt
and Poul run wild with their ideas, and only time will tell if that was a good thing *wink, wink*. Matt
has been keeping those meeting minutes on his portal site, and shortly he or I will put together a sum-
mary of those minutes. If you haven't had a look at the model repository search
[http://www.bioeng.auckland.ac.nz/physiome/php/repository_search.php], check it out to find a model
that you're looking for quickly and easily. And just for your information, the cellml.org site is moving
from a server in Princeton, New Jersey to a local server here in New Zealand to make it easier for site
maintenance, but I cannot tell you when that move will be completed. Hopefully you won't notice a dif-
ference.

However, the reason I was motivated to write these meeting minutes is that we've begun to reapproach
the import and reuse features introduced in the CellML 1.1 (6 November 2002) Draft Specification
[../../public/specification/20021106/index.html]. A recent meeting with the SBML folks set Poul to pon-
dering, and after having a six month break from the 1.1 stuff and gaining fresh perspective in the form of
Matt, we were all able to critically examine the import method described in the draft spec. Two prob-
lems came to mind: we never really discussed how the model tree is handled by applications (described
in the section “What happens to the model tree...”), and the entire model is imported, connections and
everything (see the section “Importing the Entire Model”).

What happens to the model tree...
From Poul's e-mail:

I am still not happy with the way importing models is handled. It seems to me that the
semantics of nested models is too tightly coupled to the way models are imported. In
particular, if I have a model tree that I wish to edit and consolidate as a single model
(or rearrange to form a different model tree) the semantics of the allowed coupling
between variables/components/units will change (because they are dependent upon the
particular nesting of models).

One way around this undesirable situation is to change the specification of
<import_model> to restrict any connections to child models to be made via the
private interface of components in the parent model. With this approach all compon-
ents in child models will behave as encapsulated components in the parent model, es-

1

http://www.bioeng.auckland.ac.nz/physiome/php/repository_search.php
../../public/specification/20021106/index.html

sentially using the component-level mechanism of encapsulation for information hid-
ing. One obvious advantage of this approach is that the encapsulation induced by im-
porting models is semantically identical to information hiding via encapsulation, and
thus independent of the model hierarchy. This approach also relegates model importa-
tion to the role of a syntactic convenience, and retains encapsulation as the sole mech-
anism for information hiding.

Matt's argument (in my very simplified versioning) was that it depends on what you are importing for,
which eventually lead to the discussions presented in the section “Importing the Entire Model”. Other
than that, no one vehemently objected to Poul's recommendation, and, since I don't think his concerns
are cleared up with the following solution, we might adopt his proposal. Of course, you all will correct
me if I'm wrong.

Importing the Entire Model
I never was happy with the idea of importing an entire model, connections and all. In order for the meth-
od to be successful at all, modellers have to be too forward thinking. As we discovered last July
[20020726_meeting_minutes.html], you can't just import any model without worrying about the con-
sequence of the connections. So to avoid those problems with the connections, a modeller must anticip-
ate that someone else may want to reuse any of his components and split a possible model into many
separate component-models. As seen by my demonstration using the Zeng et al modification of the Luo-
Rudy II model [../../examples/examples/CellML_1.1/reuse_models_doc/zeng_reuse_doc.html], the cur-
rent method of importing can be unwieldy, a situation we are trying to avoid.

We went back to the marker board. Poul's immediate suggestion was to add two new elements using
similar semantics as the <import_model> element. The first, an <import_component> element,
would add the imported model's component to the importing model but no connections or groups. Bey-
ond the xlink:title and xlink:href attributes, you would need an extra attribute such as com-
ponent to indicate which component you're importing. The second would be an <import_units>
element and correspondingly would import the units from a model but no components, connections, and
groups, and would feature an extra attribute such as units for clarification. Poul added that this could
all be done under a single <import> element with the meaning of the import implied by the attributes
present.

The extra benefit of Poul's suggested method of import is that we could possibly get rid of the horrid
model_1 and model_2 attributes on the <map_components> element of a connection because the-
oretically you could directly connect to the imported component (although I'd imagine you'd still want to
be able to connect to components in a fully imported model). The drawback is that the specifically im-
ported components or units might be dependent on other units which means the modeller might have to
have a lot of imports or we apply some messy rules about inference.

Matt quietly interjected at this point - what we really want to get rid of is the connections. How about in-
troducing a with_connections attribute to the <import_model> element that has a boolean
value? Yeah, seems simple and clear now, but hindsight blah, blah, blah. So giving a
with_connections attribute a value of "no" on an <import_model> element would indicate
that you are importing an entire model without the connections (Captain Obvious).

We were all quite happy with Matt's solution, but there were two dilemmas we were facing towards the
end of the meeting. The first went back to Poul's distaste of the model_1 and model_2 attributes, and
importing a model without connections does not eliminate this problem. If you'll remember, we resigned
ourselves to this method after discarding a couple of other dysfunctional ideas last July (see Section 5)
[20020726_meeting_minutes.html]. Again Matt offered a suggestion (shown in Figure 1). Poul sat
mulling over Matt's example. Then he turns and asks David B, “Why didn't we do it like that in the first
place?” David quips, “I don't know. Warren advocated that method, but you objected for some reason.”
“Oh,” says Poul. Heehee. I haven't researched if David's right, but it's funny knowing that if you argue
with Poul on an issue, he'll probably come back in a few months time and argue your position for you.

Meeting Minutes 10 June 2003

2

20020726_meeting_minutes.html
../../examples/examples/CellML_1.1/reuse_models_doc/zeng_reuse_doc.html
../../examples/examples/CellML_1.1/reuse_models_doc/zeng_reuse_doc.html
20020726_meeting_minutes.html

<connection>

<map_components>

<component_1 component="calcium_channel" model="imported_model" />

<component_2 component="environment" />

</map_components>

<map_variables variable_1="time" variable_2="time" />

</connection>

Figure 1. Matt was only talking about breaking down the <map_components> element, but we'd
probably want to be consistent and break down the <map_variables> element, as well.

I disagreed with Matt on his solution because if we changed the spec in such a way, it means that every
CellML 1.0 model will no longer be valid CellML 1.1. David B and Poul argued that we could quickly
transform all the old models to be correct to this method, but the thing is that the model_1 and mod-
el_2 attributes, ugly as they are, aren't exactly wrong. I once thought that backwards compatibility was
important to more people than just me.

The second dilemma concerns whether we should also break up the encapsulation hierarchy when we
import without connections. Andre says yes, we should because what's the point of breaking all the con-
nections if you don't get direct access to all the components? I say why is it such a necessity to get direct
access to all the components when you have to re-do all the connections anyways? Surely a modeller
adds the encapsulation to structure his model in meaningful ways; wouldn't you want that structure
maintained when it's imported? Fodder for another week (or month).

Miscellaneous

• Poul suggested we revisit the “<model> purely as a container” discussion. We talked about it a bit
but still remained divisive (though I'm not sure how because I'm certain we all agreed on it the last
time it was brought up).

• Matt wants the <component_ref> element changed because component_ref means something
different in whatever logic he uses than the way we use it. I will continue to object to the change be-
cause he hasn't yet convinced me that his is not a semantical argument - more philosophical than
practical. He will probably argue that I'm not the one he needs to convince (true), but I don't think
Team CellML should take the issue of changing element names lightly. Michael diplomatically sug-
gested that we deprecate the use of <component_ref> in favour of whatever Matt wants, which
is a better idea, if it needs to be changed at all (but I still don't think it does).

I'll leave you with my new favourite quote, “In meetings, [s]he who writes the minutes determines the
outcome.” Ha. Said Rinaldo [http://www.netfunny.com/rhf/jokes/89q1/rinald.298.html].

Meeting Minutes 10 June 2003

3

http://www.netfunny.com/rhf/jokes/89q1/rinald.298.html

