
http://www.cellml.org/private/progress reports/20020719 meeting minutes.pdf 1

Meeting Minutes 19 July 2002

CellML 1.1 Namespaces & Identifier Issues
Author:

Autumn A Cuellar (Bioengineering Institute, University of Auckland)
Contributors:

David Bullivant (Bioengineering Institute, University of Auckland)
Catherine Lloyd (Bioengineering Institute, University of Auckland)
Mike Lovell-Smith (Bioengineering Institute, University of Auckland)
Poul Nielsen (Bioengineering Institute, University of Auckland)
David Nickerson (Bioengineering Institute, University of Auckland)

1 Introduction

Still ironing out problems with CellML 1.1 Specification. Warren had a look at what I’d written up for the
new Importing Models1 section and had some constructive criticism to offer. In the following sections we
discuss the two main issues concerning the 1.1 Specification that need to be addressed: version information
in namespaces and how to identify imported models.

2 CellML 1.1 Namespace Issue

Last year Warren consulted the XML community (see the xml-dev discussion group archives2) asking for
suggestions of how to contain version information in an XML document. This is a much debated topic,
as seen by the number of methods the XML community has come up with to deal with this information.
As Warren points out, the Dublin Core uses different namespaces to represent version changes, the W3C’s
XSLT language uses a version attribute on the root element, and the MathML language uses neither of
the above. Practically every method has its advantages and its drawbacks, but since there is no industry
standard of how to encapsulate changes to a language, each group is left on its own to solve this messy little
problem.

Warren chose to use the Dublin Core solution: each new version of CellML should belong to its own
CellML namespace. As far as I can tell, his motivation was the vision that CellML libraries could be com-
posed of incomplete XML documents, documents that did not have root elements, generally components of
oft used biological compartments, species, etc, that could be re-used and incorporated into full models. For
incomplete XML documents, the standard document type declaration identifying the document to validate
against (generally a decent tip to version information on its own) would be inapplicable. Furthermore, since
he anticipated the use of CellML components not contained in a root <model> element, he wanted to relay
the version information without having to tag a version attribute to every element.

So how does Warren’s decision of last year affect us this year? Well, it leaves us with the main draw-
back that people complain about when mentioning the namespaces-as-versioning technique: XPath infor-
mation gets messed up (yep, that’s the technical explanation). The problem is that namespaces provide
a unique name for your elements and attributes so that an application built to understand the CellML 1.0
language not only doesn’t understand the newly introduced elements, but it doesn’t understand any of the
elements because <http://www.cellml.org/cellml/1.1#connection> is not the same ele-
ment as <http://www.cellml.org/cellml/1.0#connection>.

The whole point of these ramblings is that we realized we needed to 1) decide if the changes that we had
made in the CellML Specification were enough to warrant a namespace update (since we could have made

1http://www.cellml.org/private/unstable cellml spec/import model.html
2http://lists.xml.org/archives/xml-dev/200105/msg00037.html

http://www.cellml.org/private/progress reports/20020719 meeting minutes.pdf 2

the changes under the same namespace as the MathML folks did) and 2) clarify treatment of new elements
under same or other namespace in Specification depending on what we decided. After some discussion, our
conclusions were that the entire CellML language would be redefined under the new 1.1 namespace, but
applications that understand CellML 1.1 should also be written to understand 1.0.

3 CellML 1.1 Identifier Dot Notation

Poul has been expressing concern over our proposed use of the dot notation to identify models from which
we are importing parts. He and I recently attended a workshop held by the SBML people, and at this two
day meeting, they spent a good deal of time debating on the limitations of the identifiers, which, like ours,
consist of only alphanumeric characters and the underscore (). I won’t go into the details of the debate, but
in the end they decided to use two identifiers, one using the current notation to be used by the computer, the
other expanded to include any Unicode character to be used by the user.

Following these long discussions, Poul became more convinced that if we want to keep our identifier
names in line with the SBML group’s, the dot notation that we had originally quite liked might cause us
difficulty in the future. His suggestion is to tag a model attribute to any of the elements that may use an
imported feature (or in the case of the connection elements have a model 1 and model 2 attribute) as
shown in Figure 1.

<import_model name="units_vocabulary" uri="http://www.example.com/units.xml" />

<component name="membrane">
<variable name="Cm" units="microF" model="units_vocabulary" />
<variable name="I_st" units="microA_per_microF" model="units_vocabulary" />

...

</component>

FIGURE 1: The use of a model attribute instead of the formerly proposed “dot notation”. Would ob-
viously have to clarify the meaning of the model attribute in spec, i.e. the units are from the model

"units vocabulary", not the variable.

I for one am not entirely convinced this is the way to go for two reasons:

• Poul’s argument that we need to remain somewhat consistent with the SBML group has been for the
most part rendered invalid because they have chosen to keep an internal identifier that is the same as
what we are currently using. Thus, the dot notation does not find implementation problems in SBML.

• Use of a model attribute makes it difficult to refer to what I’ll call inherited models, models imported
by imported models.

David B. and I had a brief conversation about how to get around this, and he suggested that there should
be some logical way to accomplish what the dot notation did without using the dot. In other words, instead
of a.b.c you have (a, (b, c)) where the brackets indicate placement of XML start and end tags. See
Figure 2 for an example of how to encode this notation. If you can think of a better way, please let us know.

Tune in to the next riveting installment of CellML Meeting Minutes to see which solution we accept.

E-mail questions, criticism, submissions or info to info@cellml.org
Input document last modified : Mon Feb 02 15:25:02 NZDT 2004

http://www.cellml.org/private/progress reports/20020719 meeting minutes.pdf 3

<import_model
name="complex_units_vocabulary"
uri="http://www.example.com/units.xml" />

<component name="membrane">
<variable name="Cm">

<model_ref ref="complex_units_vocabulary">
<model_ref ref="simple_units_vocabulary" units="microF" />

</model_ref>
</variable>
<variable name="I_st">

<model_ref ref="complex_units_vocabulary" units="microA_per_microF" />
</variable>

...

</component>

FIGURE 2: In this example, the model imported referred to as "complex units vocabulary" itself
imports another model referred to by the name "simple units vocabulary".

