
http://www.cellml.org/private/progress reports/20010716 meeting minutes.pdf 1

Meeting Minutes 16 July 2001

Equation Scope and Initial Conditions
Author:

Warren Hedley (Bioengineering Institute, University of Auckland)
Contributors:

David Bullivant (Bioengineering Institute, University of Auckland)
Autumn Cuellar (Bioengineering Institute, University of Auckland)
Poul Nielsen (Bioengineering Institute, University of Auckland)

1 Introduction

This document resulted from a meeting on July 16, was used as input to a meeting on July 17, and then was
substantially revised based on that discussion.

This document deals with two under-defined areas in the CellML specification: equation scope and ini-
tial conditions. Equation scope is the domain in which an equation can be said to “hold” or be relevant. This
is not normally specified for the equations in a CellML model, which typically are assumed to hold at all
times and locations in a simulation, but becomes a problem when combined with explicitly specified initial
conditions. Initial conditions themselves are not very elegantly handled in CellML, and in particular the
definition of the initial value attribute on the <variable> element needs a bit more clarification.

2 Equation Scope

In the current set of examples available on the CellML website, it is never specified what the scope of
particular equations is. It is normally just assumed that the domain of solution for a model that has time as
the independent variable is t > 0. In part, this represents a conscious decision on the part of CellML’s
authors that simulation information should be kept separate from the model itself (a very fuzzy boundary),
and in part under-specification of the mathematics. In fact, a model’s definition is very closely coupled with
the kind of simulations that may be run, but the fact that many different simulations may need to be run
with a given model demands that this information be separated.

It is not currently specified, but should be, that the scope of an equation in a CellML document is infinite
with respect to all independent variables, unless specifically constrained using the appropriate MathML ele-
ments. If all equations have infinite scope, then it becomes simple to define invalid math with contradictory
equations.

A case that highlights the problem is the setting of an initial condition for a variable based on evaluation
of other parameters, as shown in the trivial example in Figure 1, where the first two equations are initial
conditions only. When combined with a differential equation, with neither equation containing any sort of
conditional status, the result is two equations with overlapping scope.

The MathML in Figure 1 defines the following three equations:

constant a = 5.0 (1)

dependent var = constant a · 2.0 (2)

d dependent var

d time
=

constant a

2.0
(3)

http://www.cellml.org/private/progress reports/20010716 meeting minutes.pdf 2

<component
name="dependent_initial_condition_example"
xmlns="http://www.cellml.org/cellml/1.0#"
xmlns:cellml="http://www.cellml.org/cellml/1.0#">

<variable name="constant_a" units="metre" />
<variable name="dependent_var" units="metre" />
<variable name="time" public_interface="in" units="second" />

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><eq />
<ci> constant a </ci>
<cn cellml:units="dimensionless"> 5.0 </cn>

</apply>

<apply><eq />
<ci> dependent var </ci>
<apply><times />

<ci> constant a </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>

</apply>
</apply>

<apply><eq />
<apply><diff />

<ci> dependent var </ci>
<bvar><ci> time </ci></bvar>

</apply>
<apply><divide />

<ci> constant a </ci>
<cn cellml:units="second"> 2.0 </cn>

</apply>
</apply>

</math>
</component>

FIGURE 1: An example containing three equations with overlapping scope. Note that, although this is valid
CellML, the mathematics are invalid.

http://www.cellml.org/private/progress reports/20010716 meeting minutes.pdf 3

In this particular problem, we will assume that time is the only independent variable. If all three equa-
tions are assumed to have infinite scope and constant a is non-zero (which it is), then the three equations
can not be simultaneously satisfied for all values of time.

As previously stated, the second equation is an initial condition, which holds for time = 0.0 only. Let’s
examine how we can legally specify this in MathML.

MathML 2.0 provides several constructs with which the scope of an equation can be limited. Only one
of these is included in the CellML subset of MathML elements defined in Section 4.2.3 of the 18 May 2001
spec1. That is the <piecewise>, <piece>, <otherwise> construct, which allows the definition of
switches and basic conditional statements. It would be tempting to try and describe the problem with the
MathML shown in Figure 2, which limits the scope of each equation.

<math xmlns="http://www.w3.org/1998/Math/MathML">
<piecewise>

<piece>
<apply><eq />

<ci> dependent var </ci>
<apply><times />
<ci> constant a </ci>
<ci cellml:units="dimensionless"> 2.0 </ci>

</apply>
</apply>
<apply><leq />

<ci> time </ci>
<cn cellml:units="second"> 0.0 </cn>

</apply>
</piece>
<otherwise>
<apply><eq />

<apply><diff />
<ci> dependent var </ci>
<bvar><ci> time </ci></bvar>

</apply>
<apply><divide />
<ci> constant a </ci>
<cn cellml:units="second"> 2.0 </cn>

</apply>
</apply>

</otherwise>
</piecewise>

</math>

FIGURE 2: The mathematics from Figure 1 might be rewritten using MathML’s <piecewise>, <piece>,
<otherwise> construct to prevent the scope of the two equations from overlapping, and hence the equations

from contradicting each other. We believe that this is an invalid use of MathML.

The MathML in Figure 2 defines the following case statement, where the case statement has no LHS:

{

dependent var = constant a · 2.0 if time = 0

d dependent var

d time
=

constant a

2.0
otherwise

(4)

1http://www.cellml.org/public/specification/20010518/mathematics.html#sec math cellml subset

http://www.cellml.org/private/progress reports/20010716 meeting minutes.pdf 4

It states in Section 4.4.2.16 of the MathML 2.0 specification2 that the <piecewise> element can
only be used as a constructor. This suggests (although it is not explicitly stated) that the <piecewise>
element constructs some value, which can then be assigned to something. We believe that the use of the
<piecewise> element in Figure 2 is invalid, or at least does not conform to the intent of the authors of
the MathML specification.

A problem like this is better handled using the <forall> element, which is discussed in Section
4.4.3.17 of the MathML 2.0 specification3. The <forall> element allows the modeller to conveniently
specify the scope of an assertion in terms of bound variables and a condition statement. Unfortunately for
us there is no way of connecting two “forall” statements to indicate that they are mutually exclusive, as a
“piecewise” statement does. So the correct definition of the dependent initial condition problem is shown
in Figure 3.

The equations defined in Figure 3 are shown below. The specification of equation scopes allows a solver
to unambiguously determine which equation to evaluate for any given value of the independent variable
time, removing any potential conflicts from the model definition.

constant a = 5.0 (5)

dependent var = constant a · 2.0 ∀ time = 0 (6)

d dependent var

d time
= constant b ∀ time > 0 (7)

Note that the <forall> element is not in the CellML subset of MathML elements. This was de-
liberately omitted because the authors don’t anticipate much use for this element, and its use involves a
reasonably significant burden for the implementors of CellML processing software.

3 Initial Conditions

In the trivial example shown in Figure 1, it was apparent that the initial condition for the dependent var
could actually be set using an initial value attribute on the <variable> element. The meaning of
this attribute is currently poorly defined in the CellML specification with the following text:

initial value — This attribute provides a convenient means for specifying the initial or
default value of a scalar variable in a simulation with time as the independent variable. The
variable’s value may be reset or modified in equations in the current component. The initial
values of variables need not be set in the model definition at all; they could instead be set in a
configuration file loaded separately by the model processor.

The problem of specifying initial and/or boundary conditions is so huge that it was deliberately left out
of CellML 1.0 to make CellML manageable. In any simulation with more than one independent variable,
something better than a set of scalar values will generally be need to specify a model’s boundary condi-
tions. This could use MathML to specify equations along a boundary, or FieldML to specify a piecewise
polynomial approximation. In problems with more than one independent variable, the initial and/or bound-
ary conditions will invariably be closely linked to the simulation itself, which seems like a good argument
for leaving this problem to be dealt with when we finally come to standardising a simulation specification
format.

2http://www.w3.org/TR/MathML2/chapter4.html#contm piecewise
3http://www.w3.org/TR/MathML2/chapter4.html#contm forall

http://www.cellml.org/private/progress reports/20010716 meeting minutes.pdf 5

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply><eq />

<ci> constant a </ci>
<cn cellml:units="dimensionless"> 5.0 </cn>

</apply>

<apply><forall />
<bvar><ci> time </ci></bvar>
<condition>
<apply><eq />

<ci> time </ci>
<cn cellml:units="second"> 0.0 </cn>

</apply>
</condition>
<apply><eq />
<ci> dependent var </ci>
<apply><times />

<ci> constant a </ci>
<cn cellml:units="dimensionless"> 2.0 </cn>

</apply>
</apply>

</apply>

<apply><forall />
<bvar><ci> time </ci></bvar>
<condition>
<apply><gt />

<ci> time </ci>
<cn cellml:units="second"> 0.0 </cn>

</apply>
</condition>
<apply><eq />
<apply><diff />

<ci> dependent var </ci>
<bvar><ci> time </ci></bvar>

</apply>
<apply><divide />

<ci> constant a </ci>
<cn cellml:units="second"> 2.0 </cn>

</apply>
</apply>

</apply>
</math>

FIGURE 3: In this MathML fragment, the <forall> element is used to limit the scope of two of the
equations, preventing the second two equations from conflicting.

http://www.cellml.org/private/progress reports/20010716 meeting minutes.pdf 6

However, for many of the simple models that we deal with now, with only a single independent variable
time and only ordinary differential equations, it is sufficient to specify an initial condition and a differential
equation for each state variable, and run meaningful simulations from this. The initial value attribute
is a convenient way for embedding the initial conditions on any variable for such a simulation in the model
definition. It also allows the specification of constant variables — it is often appropriate to store constants
in variables so that they can be defined in one place only and then referenced by name, and also to indicate
to software that the constant can be modified by the user.

The CellML specification needs a better definition of the initial value attribute, and CellML pro-
cessing software needs some guidelines on how to handle it in various cases. One possible option was to
define the initial value attribute’s semantics and the associated processor behaviour as follows:

• The attribute provides a convenient means for specifying the initial or default value of a scalar vari-
able in a simulation with a single independent variable (as opposed to time specifically — CellML
processing software may not assume that a particular variable represents time, even if it is called
time).

• CellML processing software must ignore the value of an initial value attribute on a <variable>
element in a model that has more than one independent variable. (The alternative is to say that it is an
error to define an initial value attribute in such models — any ideas?)

This particular solution makes components less re-usable, as when a component where variables are
declared with initial value attributes are moved from a model with one independent variable to a
more complex model with more than one independent variable, the initial conditions would be lost. A
better solution is to say that:

• The initial value attribute provides a convenient means for specifying the value of a scalar
variable when all independent variables in the model have a value of 0.0.

• CellML processing software must assume that the presence of an initial value attribute on a
variable element implies the following equation:

variable = initial value ∀ independent variables = 0.0 (8)

4 Changes to the Spec

The points raised above merit some changes to the CellML specification in the interests of clarification of
these potentially confusing issues. I propose the following changes to the unstable version of the CellML
specification available on 16 July 2001 (see the corrections to the 18 May 2001 final draft 4 before this date
to get an idea of what it may have looked like, if you come across this document later).

After “Section 4.5.1 - Ordering of Expressions”, we should add “Section 4.5.2 - Scope of Expressions”,
with the following text:

CellML processing software must make no assumptions about the scope or domain of a math-
ematical expression defined within a model. Unless explicitly stated, all expressions hold for
any and all combinations of independent variables.

After “Section 4.2.4 - Ordering of Expressions”, we should add “Section 4.2.5 - Scope of Expressions”,
with the following text:

4http://www.cellml.org/public/specification/20010518/errata.html

http://www.cellml.org/private/progress reports/20010716 meeting minutes.pdf 7

Within a CellML model, all expressions are assumed to have unlimited scope with respect to
the independent variables unless explicitly stated using MathML’s <piecewise> construct
or some other form of conditional expression. This means that if the initial conditions for a
variable, the value of which is determined by a differential equation, are to be specified using
an equality, the two equations should have their scope limited so that they do not contradict
each other.

In “Section 3.2.3 - Definition of variables”, the bullet point describing the initial value attribute
should be changed to have the following text:

• The initial value attribute provides a convenient means for specifying the value of a scalar
variable when all independent variables in the model have a value of 0.0. Independent variables are
those with respect to which another variable is differentiated or integrated.

Directly under the bulleted list, the following explanatory text should be added:

The name of the initial value attribute derives from the fact that, in a model with only
one independent variable, this would generally correspond to time, and so the value of the
initial value attribute set the starting condition for a simulation which progressed from
time equals 0.0. The initial values of variables need not be set in the model definition at all.
When multiple simulations are to be run using the same model, initial and boundary condi-
tions are most conveniently set in an external simulation configuration file loaded separately by
CellML processing software.

I don’t think we actually need to specify any processing software rules relating to the initial value
attribute.

E-mail questions, criticism, submissions or info to info@cellml.org
Input document last modified : Mon Feb 02 15:25:02 NZDT 2004

