
http://www.cellml.org/private/progress reports/20010402 meeting minutes.pdf 1

Meeting Minutes 2 April 2001

MathML Subsetting Options
Author:

Warren Hedley (Bioengineering Institute, University of Auckland)
Contributors:

David Bullivant (Bioengineering Institute, University of Auckland)
Yi Ge (Physiome Sciences Inc.)
Melanie Nelson (Physiome Sciences Inc.)
Kam Jim (Physiome Sciences Inc.)
Poul Nielsen (Bioengineering Institute, University of Auckland)

1 Introduction

In the 27 March meeting minutes1, a system of subsetting the MathML content elements was proposed for
use within CellML. In this proposal, there was a basic set of MathML elements that could be used to define
any model that consisted of nothing but a system of ODEs, and numerous other sets of elements that were
related to specific problem domains such as integration, partial differentiation, and imaginary numbers.
Naturally Poul Nielsen, though abroad, did not waste any time shooting down this proposal.

In this document, we sum up Poul’s comments, and present a summary of the principle approaches we
can take to the subsetting problem, with their advantages and disadvantages.

2 Poul’s Beef

The main problem that Poul had with Warren’s MathML subsetting system was the sheer number of element
sets that Warren had defined. He felt that this would lead to severe interoperability problems between
CellML applications. For instance, if application A said it supported the basic and integration sets, and
application B said it supported the basic and imaginary sets, you couldn’t be sure that models exported
from application A could be read by application B, even if the majority in fact could. Defining a number
of sets makes things more difficult for both the user and the language designer (although that would be the
first time he’d shown any concern for the language designer!)

Whereas Warren had created sets of elements based on their function, Poul suggested ranking elements
purely on the basis of difficulty of implementation. “Easy” elements should be added to the basic set, even
if the chances of them showing up in models was slim. This would hopefully not greatly affect the burden
of MathML implementation. This would mean that elements related to trigonometry, for instance, which
could be easily implemented, should be in the basic set.

Poul’s single basic subset of MathML elements would contain the following of Warren’s sets:

• basic

• miscellaneous, including <max>, <min>, <factorial>, <floor> and <ceiling>

• integration, needed for mechanics models like HMT

• linear algebra, needed for coupled systems of ODES ??

• trigonometry

• constants and symbols, including gems like <pi> and <imaginaryi>

1http://www.cellml.org/private/progress reports/20010327 meeting minutes.html



http://www.cellml.org/private/progress reports/20010402 meeting minutes.pdf 2

3 Subsetting Solutions

This section presents some of the possible solutions to the math subsetting problem.

3.1 Solution 1 : Warren’s Original Proposal

Warren’s original proposal is documented in the 27 March meeting minutes2. Warren’s subsets consist of a
basic set containing all of the elements necessary to describe models based on systems of ODEs, plus about
10 other sets of MathML elements, sorted by problem type.

The principal advantage of Warren’s subsets was that it would be reasonably easy for software imple-
menting CellML to implement the basic subset, which would cover the majority of pathway models as well
as many simple EP models. Also, software would be able to easily specify what additional functionality it
supported, and not be obliged to interpret large numbers of MathML elements that it didn’t expect to use.
This is particularly important for implementors of signal transduction pathway simulation packages, who
would never achieve any level of CellML compliance if integration elements (which they are probably not
interested in) are added to the basic set.

The principal disadvantage of using Warren’s subsets is that it could easily create an interoperability
nightmare where applications could export models in CellML that no other applications could read. Before
MathML parsing could begin, applications would have to scan ahead looking for elements that they were
unable to interpret. However, given the “math problem type” metadata elements in the CellML metadata
specification, it should be possible for software to work out beforehand if it is likely to be able to do anything
useful with a given model.

An alternative is for models and/or components to declare the subsets of MathML elements that make
use of internally, possibly using some syntax in the CellML metadata namespace. This could be regarded
as duplication of information that could be fairly easily evaluated by scanning the enclosed MathML.

3.2 Solution 2: Poul’s Two Sets Proposal

As described in Section 2, Poul thought that Warren had defined too many sets. He preferred the definition
of basic and difficult sets. The proposed contents of Poul’s basic set are shown in Figure 1.

<cn>, <ci>, <apply>, <divide>, <minus>, <plus>, <times>, <power>, <root>, <abs>,
<eq>, <neq>, <gt>, <lt>, <geq>,<leq>, <and>, <or>, <xor>, <not>, <diff>, <bvar>,
<degree>, <piecewise>, <piece>, <otherwise>, <exp>, <log>, <ln>, <semantics>,
<annotation>, <annotation-xml>, <quotient>, <factorial>, <max>, <min>, <rem>,
<gcd>, <lcm>, <floor>, <ceiling>, <int>, <lowlimit>, <uplimit>, <sin>, <cos>,
<tan>, <sec>, <csc>, <cot>, <sinh>, <cosh>, <tanh>, <sech>, <csch>, <coth>,
<arcsin>, <arccos>, <arctan>, <arccosh>, <arccot>, <arccoth>, <arccsc>,

<arccsch>, <arcsec>, <arcsech>, <arcsinh>, <arctanh>, <vector>, <matrix>,
<matrixrow>, <determinant>, <transpose>, <selector>, <vectorproduct>,
<scalarproduct>, <outerproduct>, <integers>, <reals>, <rationals>,

<naturalnumbers>, <complexes>, <primes>, <exponentiale>, <imaginaryi>,
<notanumber>, <true>, <false>, <emptyset>, <pi>, <eulergamma>, <infinity>

FIGURE 1: The MathML elements in Poul’s proposed basic set.

2http://www.cellml.org/private/progress reports/20010327 meeting minutes.html



http://www.cellml.org/private/progress reports/20010402 meeting minutes.pdf 3

The advantage of having only two sets is that when an application says it implements “MathML in
CellML Level One” (for want of a better name), you can be fairly confident that it will be able to exchange
models with the vast majority of CellML compliant software (because this is all that most software will
implement).

The disadvantage is that no-one really wants to have to implement the whole of the basic set. There are
a number of elements in there that are difficult yet not useful for the majority of software (integration in
particular), and many elements that are completely useless in general (think <primes>). It is likely that it
no-one would ever really implement the complete basic set, making the interoperability argument a bit of a
joke.

Furthermore, with two sets (the rest of the elements fall into “MathML in CellML Level Two”), ex-
tending the basic set becomes more problematic. If some hypothetical application is interested in spatial
models, and they add support for Warren’s partial differentiation element set, then they have no facility for
advertising this capability (except by word of mouth), unless they implement the complete extended set.
Realistically, this will never happen.

3.3 Solution 3 : Some Sort of Compromise

I can’t believe I’m using the “C” word in meeting minutes. Let’s look at what we’d like to have:

1. a very small number of MathML element sets

2. a basic set that isn’t going to be hard for people to implement

3. a means by which software can advertise its handling of elements not in the basic set

Points 1 and 2 can be handled by merging some of Warren’s sets.
The first step is to look for elements that can be added to the basic set. The basic set from the 27 March

2001 meeting minutes consisted only of the elements needed to define basic pathway and EP models, some
logical expressions (for switching), and the MathML annotation elements (the preferred way of associating
equation rendering information with an expression). Elements should only be added to the basic set if they
are easy to implement and are not completely useless.

These elements include (and it could be argued that most of these are, in fact, largely useless):

• From the miscellaneous arithmetic operators set: <max>, <min>, <floor> and <ceiling>

• From the trigonometry set: everything

• From the constants and symbols set: <pi> and <notanumber>

The second step is to add more elements to the not very useful set. This set should only contain elements
that are not likely to show up in any mainstream models whatsoever.

These elements include:

• From the miscellaneous arithmetic operators set: <quotient>, <factorial>, <rem>, <gcd>
and <lcm>

• From the theory of sets set: everything

• From the sequences and series set: everything

• From the statistics set: everything

• From the constants and symbols set: everything apart from <pi> and <notanumber>



http://www.cellml.org/private/progress reports/20010402 meeting minutes.pdf 4

• basic

<cn>, <ci>, <apply>, <divide>, <minus>, <plus>, <times>, <power>, <root>,
<abs>, <eq>, <neq>, <gt>, <lt>, <geq>,<leq>, <and>, <or>, <xor>, <not>,
<diff>, <bvar>, <degree>, <piecewise>, <piece>, <otherwise>, <exp>, <log>,
<ln>, <semantics>, <annotation>, <annotation-xml>, <max>, <min>, <floor>,
<ceiling>, <sin>, <cos>, <tan>, <sec>, <csc>, <cot>, <sinh>, <cosh>, <tanh>,
<sech>, <csch>, <coth>, <arcsin>, <arccos>, <arctan>, <arccosh>, <arccot>,
<arccoth>, <arccsc>, <arccsch>, <arcsec>, <arcsech>, <arcsinh>, <arctanh>,
<notanumber>, <pi>

• functions

<declare>, <lambda>, <csymbol>

• integration

<int>, <lowlimit>, <uplimit>

• partial differentiation

<partialdiff>, <divergence>, <grad>, <curl>, <laplacian>

• imaginary

<arg>, <real>, <imaginary>, <conjugate>, <sep>

• linear algebra

<vector>, <matrix>, <matrixrow>, <determinant>, <transpose>, <selector>,
<vectorproduct>, <scalarproduct>, <outerproduct>

• not very useful

<equivalent>, <approx>, <factorof>, <implies>, <forall>, <exists>,
<interval>, <inverse>, <condition>, <compose>, <ident>, <domain>,
<codomain>, <image>, <domainofapplication>, <quotient>, <factorial>,
<rem>, <gcd>, <lcm>, <set>, <list>, <union>, <intersect>, <in>, <notin>,
<subset>, <prsubset>, <notsubset>, <notprsubset>, <setdiff>, <card>,
<cartesianproduct>, <sum>, <product>, <limit>, <tendsto>, <mean>, <sdev>,
<variance>, <median>, <mode>, <moment>, <momentabout>, <integers>, <reals>,
<rationals>, <naturalnumbers>, <complexes>, <primes>, <exponentiale>,
<imaginaryi>, <true>, <false>, <emptyset>, <eulergamma>, <infinity>

FIGURE 2: A second stab at a complete subsetting of the MathML content elements for use in CellML.



http://www.cellml.org/private/progress reports/20010402 meeting minutes.pdf 5

We are now left with the sets of MathML elements shown in Figure 2. It is anticipated that elements may
be moved from the not very useful set into other sets in the future, as the needs for CellML’s mathematical
capabilities develop. For instance, elements like <mean> and <variance> may form the basis of a
stochastic set.

The third of our requirements for an ideal scheme was a simple means for software to advertise its
“MathML in CellML” compliance. The basic premises of MathML compliance are:

1. Software can be CellML-compliant without knowing anything about MathML. That means that soft-
ware that is only interested in rendering can just ignore equations and concentrate on elements in the
CellML namespace. Similarly, a tool that takes a CellML document and puts it in a database might
only care about elements in the CellML and CellML metadata namespaces.

2. For software that is concerned with mathematics, we define some levels of compliance called “MathML
in CellML”.

3. In order to be able to claim any level of “MathML in CellML” compliance, software must be able
to correctly interpret all of the elements in the basic set. It does not have to export them, or provide
facilities for modellers to view or create mathematics involving these elements, but it must be able to
interpret them.

4. Software knows what elements it can interpret. The CellML specification will not recommend a
course of action for software that receives CellML documents containing MathML elements that it is
unable to interpret.

Some options for defining further levels of “MathML in CellML” compliance are:

1. All or Nothing: (More accurately, “All or Some”). We throw away all of the sets other than the
basic set, and software can advertise only support for the MathML elements in the basic set, or full
MathML support.

2. Element by Element: We throw away all of the sets other than the basic set. Software can advertise
basic support, plus a list of additional MathML elements that it can interpret.

3. Compliance Sets: Compliance is based on the sets proposed in Figure 2. Minimally compliant soft-
ware can advertise “MathML in CellML : basic” compliance. If software also can correctly interpret
all of the elements in the functions and integration sets, for instance, it can advertise “MathML in
CellML : basic, functions & integration” compliance.

E-mail questions, criticism, submissions or info to info@cellml.org
Input document last modified : Mon Feb 02 15:25:02 NZDT 2004


