
http://www.cellml.org/private/progress reports/20010329 meeting minutes.pdf 1

Meeting Minutes 29 March 2001

Metadata Background

Author:
Melanie Nelson (Physiome Sciences Inc.)

Contributor:
Warren Hedley (Bioengineering Research Group, University of Auckland)

1 Introduction

This document provides background information about metadata, its role in the CellML project, and the
possible implementations of metadata in CellML.

1.1 Need for Metadata in CellML

Metadata is usually defined as “data about data”. It is the supporting information that provides context
to a resource. In CellML, the model (i.e., the structure and mathematics of the model) is the resource.
Information that puts the model into the larger scientific context is metadata. Metadata in CellML includes
information such as the literature reference that supports the model, the identity of the creator(s) of the
model, and the species for which the model is relevant.

The CellML metadata project needs metadata for two primary reasons:

• It will be difficult to reuse other people’s models and components without metadata to provide the
scientific context for these objects. A modeller considering reusing someone else’s model component
will need to know things such as: what biological entity the component represents, for which species
the component is relevant, and when the component was created and last modified (to help determine
whether it is likely to incorporate the most recent experimental results).

• As the number of models and components grows, metadata will provide the only scalable method for
locating particular models and components. Experience in other biological fields shows that as a field
grows, powerful search techniques are needed to enable researchers to find relevant resources. These
search techniques require structured metadata.

Metadata in CellML can be used in many different ways, such as:

• To support searches of a model repository (or at least to make it possible to automate loading of a
database that will support such searches).

• To enable automatic discovery of models published on remote websites, such as laboratory websites.

• To allow the documentation for a model to be kept in the same document as the model itself, which
will keep the documentation from becoming obsolete as work continues on the model.

The metadata structure should be flexible and extensible, because it is almost certain that we have not
thought of all possible uses of CellML metadata.



http://www.cellml.org/private/progress reports/20010329 meeting minutes.pdf 2

1.2 The Larger Metadata Picture

Metadata has become a bit of a buzzword lately. This is because people are starting to realise that we
cannot get the maximum use out of the information stored on the web without metadata. It is currently not
particularly easy to find a specific piece of information on the web, and once you have found the information,
it is not easy to determine whether or not you should trust it. Metadata can address both of these problems.
Therefore, there is a push to begin to incorporate metadata into web resources. Tim Berners-Lee has been
particularly active in pushing for a “semantic web”, in which resources on the web would include the
semantic information necessary to allow machines to understand (not just read) them. The W3C has set up
a semantic web activity1. Some software projects, such as Mozilla2, have begun trying to take advantage of
the metadata that is currently available about web resources.

The “semantic web” vision is one of the future, and not of today. Several projects are beginning to take
tentative steps towards realising Tim Berners-Lee’s dream, but success is by no means certain. The library
science community is leading the way in implementing metadata. A consequence of this is that the tools
being provided for handling metadata on the web (such as the Resource Description Framework3, or RDF)
have come from the knowledge management community. Like any academic discipline, that community
has its own jargon, which can be a hindrance to the rest of us when we try to understand and use these tools.
However, several projects are now using RDF, and a variety of tools have been created for it. These will be
discussed in Section 3.2.

None of the problems faced by the nascent metadata community are insurmountable. It seems very
likely that something resembling the “semantic web” will come into existence, if for no reason other than
the importance of the problem it is attempting to address. Therefore, we should at least consider how we
can make metadata in CellML compatible with the semantic web activity.

2 Metadata in CellML

The initial step in incorporating metadata into CellML was to determine what sorts of information modellers
might want to store about their models, and what sort of information software developers might find useful
to be able to store. This was done as part of the requirements gathering for version 1.0 of CellML. A list of
the metadata requirements for CellML is included in the requirements document4.

The necessary metadata can be split into three broad categories:

• Metadata that can be mapped easily onto the Dublin Core elements (see Section 3.1).

• Literature citations, which we might be able to handle using an existing standard such as DocBook5

or the Object Mangement Group’s Bibliographic Query Service6.

• Metadata that is specific to biology and/or CellML, an implementation of which we will probably
need to develop ourselves.

1http://www.w3.org/2001/sw/
2http://www.mozilla.org/
3http://www.w3.org/RDF/
4http://www.cellml.org/private/fundamentals/requirements.html
5http://www.docbook.org
6http://www.omg.org/homepages/lsr/



http://www.cellml.org/private/progress reports/20010329 meeting minutes.pdf 3

3 Existing Standards for Metadata

There are two existing metadata standards that warrant our attention: The Dublin Core element set7 (which
defines standard types of metadata) and the Resource Description Framework8 (which defines a means to
specify metadata).

3.1 The Dublin Core Metadata

The Dublin Core Metadata Initiative9 came out of the library science community. It is an attempt to identify
metadata that is common across a variety of types of resources, and provide a standard way to refer to this
metadata. The Dublin Core group is primarily concerned with identifying the common metadata objects
(such as “creator” or “copyright”), rather than specifying how the metadata should be stored. However,
they have released a document entitled Using Dublin Core10 that gives guidelines for storing Dublin Core
metadata in HTML and XML/RDF. The Dublin Core documents most relevant for the CellML project are:

• The Dublin Core metadata element set11 (the core elements)

• The Dublin Core qualifiers12 (qualifiers that extend the core elements)

• A proposal called Guidance on expressing the Dublin Core within the Resource Description Framework
(RDF)13 (not published by dublincore.org, so of uncertain status)

Why should we care about the Dublin Core? The Dublin Core metadata element set is probably the
most widely used set of metadata elements. Most projects listed on the RDF Project list14 use the Dublin
Core metadata elements in some way or another. Using a standard vocabulary wherever possible increases
the chances that our metadata will be accessible to general purpose metadata tools. For instance, someone
could use the RDF Crawler15 to discover some basic information about CellML resources. They are more
likely to be able to interpret metadata stored in a common vocabulary such as the Dublin Core element set.
There are also a growing number of metadata tools designed to work with the Dublin Core element set. For
instance, the DC-Assist16 tool provides a browsable set of descriptions and examples for the Dublin Core
elements and qualifiers. See the Dublin Core’s tool section17 for a list of other tools.

3.2 The Resource Description Framework

The Resource Description Framework18 (RDF) is a W3C recommendation for storing and exchanging meta-
data. It specifies a general data model for metadata and provides an XML syntax for storing metadata in
this data model. The companion RDF schema recommendation19 specifies a syntax for defining the detailed
data model for a specific set of metadata. It is expected and encouraged that people will draw from a variety
of RDF schema when marking up the metadata about their documents. Because all metadata stored in RDF

7http://dublincore.org/documents/dces/
8http://www.w3.org/RDF/
9http://dublincore.org

10http://dublincore.org/documents/usageguide
11http://dublincore.org/documents/dces
12http://dublincore.org/documents/dcmes-qualifiers
13http://www.ukoln.ac.uk/metadata/resources/dc/datamodel/WD-dc-rdf/
14http://www.w3.org/RDF/#projects
15http://ontobroker.semanticweb.org/rdfcrawl/index.html
16http://www.ukoln.ac.uk/metadata/dcassist
17http://dublincore.org/tools/
18http://www.w3.org/RDF/
19http://www.w3.org/TR/2000/CR-rdf-schema-20000327/



http://www.cellml.org/private/progress reports/20010329 meeting minutes.pdf 4

uses the same basic data model (described below), the various vocabularies and schema that people develop
are all interoperable. In fact, an RDF schema can be used to define a new metadata element that is a subtype
of an element defined in a different schema.

RDF came from the knowledge representation community, and therefore has a frame of reference that
is quite different from more computer science driven standards such as XML itself. The basic data model
of RDF is a directed labelled graph, which can equivalently be expressed as a “three-tuple” (or triple).
Readers wanting a formal definition of this model should refer to Section 5 of the RDF Model and Syntax
recommendation20. What follows here is an informal explanation.

The thing about which you want to store metadata is the resource. The type of metadata you are storing
is the property. The value of the metadata is either another resource (which can itself have metadata) or a
literal. An RDF three-tuple contains a predicate, subject, and object. The subject is a resource, the predicate
is a property, and the object is the literal or resource that is the value of the metadata. RDF also provides
grouping mechanisms that allow you to unambiguously specify the correct interpretation of multivalued
objects. There are three types of grouping containers: a bag (an unordered group of objects), sequence (an
ordered group of objects), and alternative (a group of objects that specify alternative values for a single-
valued object).

Unlike XML (which restricts the allowed syntax of the data in a resource), RDF attempts to encode the
semantics, or meaning, of the data in a resource in a machine-understandable manner. The RDF elements
are all concerned with identifying the subject, predicate, and object for each metadata statement. With
this information, RDF parsers can construct directed graphs and 3-tuples of the metadata, which is itself
useful. The 3-tuples can be thought of as attribute-value pairs about the subject, and simply presenting these
attribute-value pairs to the end user is a useful thing to do with metadata.

The information in an RDF schema allows software to do more meaningful things with the metadata. For
instance, an RDF schema could define a type of metadata called “author”, and declare it to be a subclass of
the Dublin Core type “creator”. RDF-savvy software could then infer that an author has all of the properties
of a creator. An RDF schema can also limit the types of resources to which a particular property can be
applied. For instance, a “hair color” property would probably not be applicable to a resource of type “car”.
Note that the RDF Schema recommendation only has “candidate” status, and there don’t seem to be many
implementations of it yet.

Why should we care about RDF? The simple answer is that it is a W3C recommendation. It also provides
a robust and flexible framework in which metadata can be stored, and allows people working in diverse
subject areas to use each other’s metadata in an interoperable way. However, it has a steep learning curve,
due in large part to a difficult specification. Furthermore, because it is encoding the “subject-predicate-
object” information for each piece of metadata, RDF is a bit verbose (see Section 4 for a defense of this
verbosity).

Perhaps the most powerful argument for paying attention to RDF is that people are beginning to use it.
The RDF home page at the W3C21 has a list of projects and tools using RDF. Dave Beckett also has a list
of RDF resources22, which includes many tools and projects. The following is a list of some of the most
interesting projects from these lists:

• RDF Crawler23: A Java based tool that downloads RDF from the internet and constructs a knowledge-
base.

• Jena24: a Java API for manipulating RDF models.

20http://www.w3.org/TR/REC-rdf-syntax/
21http://www.w3.org/RDF/
22http://www.ilrt.bris.ac.uk/discovery/resources/
23http://ontobroker.semanticweb.org/rdfcrawl/index.html
24http://www-uk.hpl.hp.com/people/bwm/rdf/jena



http://www.cellml.org/private/progress reports/20010329 meeting minutes.pdf 5

• SiRPAC25: a set of Java for parsing RDF. There is also an online RDF parsing service, which can
return the 3-tuples and directed graph from RDF.

• Mantis26: a toolkit for developing catalogue systems.

There are at least two XSLT RDF parsers, as well as tools using Java, C, Perl, Tcl, and Prolog. Anyone
implementing CellML metadata support should look through these lists and see if there is anything useful
there.

4 Verbosity of RDF

A common criticism of RDF is that it is much more verbose than an “XML-only” language to store the same
information. The content/markup ratio seems quite low. However, this misses the fact that the information
content of an RDF statement is more than just the content of the RDF elements. It is the set of 3-tuples
that these elements encode, as well as additional structure for the metadata content. These 3-tuples provide
some very basic machine-understandable semantics of the information, whereas equivalent XML would
only provide machine-understandable syntax. The information that supports the semantic interpretation of
metadata must be stored somewhere if processing software is going to do anythign reasonable with the
metadata. In XML, this semantic information is stored in the specification of the XML vocabulary, and
therefore must also be coded into the processing applications’ logic if the metadata is going to be machine-
understandable as opposed to simply machine-readable. In RDF, more of the semantic information resides
in the document itself and in the (machine-understandable) RDF schema, making the metadata machine-
understandable to any RDF-enabled processor.

For instance, think about the simple case where we want to store the following information: ”the book’s
author is John Doe”. We could define an XML syntax for this, as shown in Figure 1. We look at this
and know that it is representing the metadata about the author of a book. However, a computer could not
automatically understand that. The fact that the <author> element is contained in the <book> element
might mean that the information in the <author> element is a property of the thing represented by the
<book> element. However, it could mean many other things, too. For instance, it might mean that the
<author> element represents an object that is contained in the object represented by the <book> element
(think about how one might represent the relationship between and engine and its parts in XML).

<book>
<author>John Doe</author>

</book>

FIGURE 1: Example XML to store author metadata about a book.

If we store the same information in RDF (see Figure 2), the fact that the author information is a property
of the book object is explicit, because this is defined by the RDF data model. Additional semantics about
the relationship between an author and a book could be provided in the RDF schema for the vocabulary
indicated by the “s” namespace.

In fact, we can go one step further, and use a standard RDF vocabulary, such as the Dublin Core, to
maximize the utility of our metadata for other applications. This is shown in Figure 3.

25http://www.w3.org/RDF/Implementations/SiRPAC
26http://orc.rsch.oclc.org:6464



http://www.cellml.org/private/progress reports/20010329 meeting minutes.pdf 6

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:s="my_example_namespace_uri">

<rdf:Description about="book_identifier">
<s:author>John Doe</s:author>

</rdf:Description>
</rdf:RDF>

FIGURE 2: Example RDF to store author metadata about a book.

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.0/">

<rdf:Description about="book_identifier">
<dc:creator>John Doe</dc:creator>

</rdf:Description>
</rdf:RDF>

FIGURE 3: Example RDF that stores author metadata using the Dublin Core creator element.

The basic RDF data model also provides useful grouping semantics. Consider the example of a resource
that has three creators. There are three interpretations of the meaning of this:

• The three creators created the resource together. All three are considered to be equally responsible
for the resource.

• The three creators created the resource together. One is considered to be the “primary author”, another
to be the “second author”, and the third to be the “third author”.

• The three creators worked on the resource, but may have worked on it independently (for instance, at
different times).

We could define an XML vocabulary that allows us to differentiate between these three options. How-
ever, the meaning of the elements and attributes that allow this differentiation would have to be coded into
processing applications’ logic. It would not be enough to simply parse the XML. If we had another type
of metadata that needed the same set of options (for instance, editors), we would either have to store the
differentiation twice, or generalize the XML elements that represent the two types of metadata.

We can also differentiate between these three options in RDF. The first option is stored in an construct
called a bag. The second option is stored in a construct called a sequence. The third option is the default
assumption, and is represented by simply repeating the RDF element that stores the creator metadata. The
meaning of these constructs is specified by RDF, and an application could understand which of the three
possibilities is correct for a particular instance of metadata simply by parsing the RDF. If we had another
type of metadata that needed the same set of options, we could use the same three constructs to represent
the different options.



http://www.cellml.org/private/progress reports/20010329 meeting minutes.pdf 7

5 Storing Metadata in CellML

We have three main options for storing metadata in CellML:

• Use RDF, and follow all recommendations for existing storing existing standards such as the Dublin
Core elements and vCard where possible (we’d still need to create our own RDF schema for some of
our metadata).

• Use RDF, but create our own RDF schema for all metadata.

• Create our own XML encoding for our metadata.

5.1 The CellML Philosophy

The decision about how to implement metadata in CellML needs to take into account:

• The overall CellML philosophy of re-using other people’s standards as much as possible.

• The need for a flexible, robust metadata system that can unambiguously store the majority of metadata
that modellers might need.

• The ease of implementing software that uses the metadata. Metadata is no use if no one implements
it.

• The “elegance” of the XML design. This includes considerations about the conciseness, clarity, and
consistency of the XML.

• The probability that our metadata solution will be interoperable with existing and future general
purpose metadata tools and projects.

5.2 Comparison of Possible Implementations

5.2.1 RDF Using All Possible Recommendations

Figure 4 shows an example of CellML creator, creation date, annotation, biological entity metadata for a
fictitious model component stored in RDF, using the Dublin Core draft recommendation for storing qualified
Dublin Core metadata in RDF27. Note that we have not worked out how to store information about people,
so only the creators’ names are provided. A more structured set of information about the creators could be
included. The encoded metadata is:

• The component was created by Betty Smith and Al Jones, working together. They have equal status
(i.e., neither is the primary author).

• The component was created on 5 October 2000.

• Betty Smith created a limitation annotation on 5 October 2000, with content of “This component is
only valid for temperatures above 20 degrees C”.

• This component represents a biological entity with the name “calmodulin”, that is identified by the
SWISS-PROT database entry CALM HUMAN. The GeBank database entry P02593 is an alternative
identifier for this entity.

The advantages of this approach are:

• It takes full advantage of all relevant standards and recommendations.

27http://www.ukoln.ac.uk/metadata/resources/dc/datamodel/WD-dc-rdf



http://www.cellml.org/private/progress reports/20010329 meeting minutes.pdf 8

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:cmeta="http://www.cellml.org/2001/03/metadata#"
xmlns:dc="http://purl.org/dc/elements/1.0/"
xmlns:dcq="http://purl.org/dc/qualifiers/1.0/">

<rdf:Description about="a_cellml_component">
<dc:creator>
<rdf:Bag>

<rdf:li>Betty Smith</rdf:li>
<rdf:li>Al Jones</rdf:li>

</rdf:Bag>
</dc:creator>
<dc:date>
<rdf:Description>

<dcq:dateScheme>W3C-DTF</dcq:dateScheme>
<dcq:dateType>created</dcq:dateType>
<rdf:value>2000-10-05</rdf:value>

</rdf:Description>
</dc:date>
<cmeta:annotation>
<rdf:Description>

<cmeta:annotation_type>limitation</cmeta:annotation_type>
<rdf:value>
This component is only valid for temperatures above 20 degrees C
</rdf:value>
<dc:creator>Betty Smith</dc:creator>
<dc:date>
<rdf:Description>
<dcq:dateScheme>W3C-DTF</dcq:dateScheme>
<dcq:dateType>created</dcq:dateType>
<rdf:value>2000-10-05</rdf:value>
</rdf:Description>

</dc:date>
</rdf:Description>

</cmeta:annotation>
<cmeta:bio_entity>
<rdf:Description>

<dc:title>calmodulin</dc:title>
<cmeta:identifier>
<rdf:Description>

<cmeta:identifier_scheme>SWISS-PROT</cmeta:identifier_scheme>
<rdf:value>CALM HUMAN</rdf:value>

</rdf:Description>
</cmeta:identifier>
<cmeta:identifier>
<rdf:Description>

<cmeta:identifier_type>alternative</cmeta:identifier_type>
<cmeta:identifier_scheme>GenBank</cmeta:identifier_scheme>
<rdf:value>P02593</rdf:value>

</rdf:Description>
</cmeta:identifier>

</rdf:Description>
</cmeta:bio_entity>

</rdf:Description>
</rdf:RDF>

FIGURE 4: Example CellML metadata in RDF, using the draft recommendation for encoding qualified Dublin
Core elements in RDF. Qualifications of CellML-specific metadata elements (those in the cmeta namespace)

are implemented in a manner consistent with the recommendations for qualified Dublin Core elements.



http://www.cellml.org/private/progress reports/20010329 meeting minutes.pdf 9

• The use of RDF and the Dublin Core increases the probability that this metadata will be interoperable
with general purpose metadata tools.

• The use of RDF increases the probability that any extensions the core CellML metadata set will be
interoperable with CellML metadata compliant processors.

The disadvantages of this approach are:

• The RDF is verbose, and it is not immediately obvious what it represents.

5.2.2 RDF Using an Entirely New Schema

Figure 5 shows an example of the same CellML creator, creation date, annotation, biological entity metadata
stored in RDF, but using only a CellML-specific schema. We can still use the Dublin Core elements and
qualifiers, but have devised our own system for encoding them in RDF. Note that we have not worked out
how to store information about people, so only the creators’ names are provided. A more structured set of
information about the creators could be included. The encoded metadata is the same as for Figure 4.

The advantages of this approach are:

• The RDF is less verbose.

• The use of RDF increases the probability that any extensions the core CellML metadata set will be
interoperable with CellML metadata compliant processors.

The disadvantages of this approach are:

• It is less likely to be interoperable with general pupose metadata tools, since a tool would have to
consult the RDF schema to discover that some of the elements are from the Dublin Core.

5.2.3 A New XML Application

Figure 6 shows an example of the same CellML creator, creation date, annotation, biological entity metadata
stored in a new XML application, which is given the cmeta namespace. We can still udraw from the Dublin
Core elements and qualifiers, but have devised our own system for encoding them in XML. Note that we
have not worked out how to store information about people, so only the creators’ names are provided. A
more structured set of information about the creators could be included. The encoded metadata is the same
as for Figure 4.

The advantages of this approach are:

• It is much less verbose.

• It would probably be easier for CellML software to implement metadata facilities if this method is
used.

The disadvantages of this approach are:

• It is not interoperable with general pupose metadata tools.

• A modeller wishing to define an extension to the metadata would do so in his or her own XML
namespace. Their XML would not need to bear any resemblance to the metadata XML we developed,
decreasing the chances that CellML processing software would be able to do anything reasonable with
the extension metadata.

E-mail questions, criticism, submissions or info to info@cellml.org
Input document last modified : Mon Feb 02 15:25:02 NZDT 2004



http://www.cellml.org/private/progress reports/20010329 meeting minutes.pdf 10

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:cmeta="http://www.cellml.org/2001/03/metadata#">

<rdf:Description about="a_cellml_component">
<cmeta:author>
<rdf:Bag>

<rdf:li>Betty Smith</rdf:li>
<rdf:li>Al Jones</rdf:li>

</rdf:Bag>
</cmeta:author>
<cmeta:date

cmeta:dateScheme="W3C-DTF"
cmeta:dateType="created">2000-10-05

</cmeta:date>
<cmeta:annotation

cmeta:annotation_type="limitation">
This component is only valid for temperatures above 20 degrees C
<cmeta:author>Betty Smith</cmeta:author>
<cmeta:date

cmeta:dateScheme="W3C-DTF"
cmeta:dateType="created">2000-10-05

</cmeta:date>
</cmeta:annotation>
<cmeta:bio_entity>
<rdf:Description>

<cmeta:name>calmodulin</cmeta:name>
<cmeta:identifier

cmeta:identifier_scheme="SWISS-PROT">CALM HUMAN
</cmeta:identifier>
<cmeta:identifier

cmeta:identifier_scheme="GenBank"
cmeta:identifier_type="alternative">P02593

</cmeta:identifier>
</rdf:Description>

</cmeta:bio_entity>
</rdf:Description>

</rdf:RDF>

FIGURE 5: Example CellML metadata in RDF, using a CellML-specific schema.



http://www.cellml.org/private/progress reports/20010329 meeting minutes.pdf 11

<component>
<metadata xmlns="http://www.cellml.org/2001/03/metadata#">

<author_group>
<author>Betty Smith</author>
<author>Al Jones</author>

</author_group>
<creation_date scheme="W3C-DTF">2000-10-05</creation_date>
<annotation

type="limitation">
This component is only valid for temperatures above 20 degrees C
<author>Betty Smith</author>
<creation_date scheme="W3C-DTF">2000-10-05</creation_date>

</annotation>
<bio_entity>
<name>calmodulin</name>
<identifier

scheme="SWISS-PROT">CALM HUMAN
</identifier>
<identifier

scheme="GenBank"
type="alternative">P02593

</identifier>
</bio_entity>

</metadata>
</component>

FIGURE 6: Example CellML metadata in a new XML application.


