
http://www.cellml.org/private/progress reports/20010110 meeting minutes.pdf 1

Meeting Minutes 10 January 2001

Review of Units Specification
Author:

Warren Hedley (Bioengineering Institute, University of Auckland)
Contributors:

David Bullivant (Bioengineering Institute, University of Auckland)
Melanie Nelson (Physiome Sciences Inc.)
Poul Nielsen (Bioengineering Institute, University of Auckland)

1 Introduction

This document quickly sums up the history of development of units for CellML, and gives some justification
for some of the changes in the way things have been done. It then goes on to propose some new ways of
doing things, with particular regard to the SBML way of doing things. The January 12 scheme, described
in Section 3, didn’t last longer than three days however, and the subsequent changes proposed on January
15 are described in Section 4.

2 Early History

The CellML team intended to make the specification of units one of their priorities way back in the heady
days of early development in 1999. Many hard years spent trying to develop working code from published
models where the units had not been correctly or completely specified had led to this becoming a bit of
an issue internally. So it was always clear that wherever a variable was first declared, and whenever bare
numbers appeared in equations, units should be associated with these entities — the only real question was
the best method.

In 1999 and early 2000, the method that had been developed used a units attribute as shown in
Figure 1. Units were made up of the product of the base and derived SI units, where each base quantity
was specified with a scaling prefix (e.g., m for milli) and an exponent. The notation was to put each triplet
between square brackets, separating the members with commas. The absence of triplet parts corresponded
to the appropriate part of [0, dimensionless, 1]. The whole system was incredibly cool because
it was concise, and unambiguous, so you could fully specify the units everywhere. Also, the units strings
could be easily split and manipulated using perl or XSLT. (Note that in some documentation the order
of the triplet was [quantity, scale, exponent] and in others it was [scale, quantity,
exponent] — the latter is more readable, so this is used in the examples below.)

<variable name="concentration_of_A" units="[m,mol,1][,l,-1]" />

FIGURE 1: The preferred method of specifying units as of early 2000.

In early 2000, some people may have pointed out that this was perhaps hard to approach for non-
mathematical people and could potentially make CellML documents hard to read for biologists and the like.
So a system was devised for associating human-readable strings with units declarations, where these strings
could then be used for associating units with variables and bare numbers. This system is shown in Figure 2.

http://www.cellml.org/private/progress reports/20010110 meeting minutes.pdf 2

<!-- the <units_abbreviation_table> appears inside a <model> element -->
<units_abbreviation_table>

<units abbreviation="dimensionless" expanded="[,,]" />
<units abbreviation="concentration" expanded="[n,mol,1][m,m,-3]" />

</units_abbreviation_table>

<!-- the <variable> element appears inside a <component> element -->
<variable name="A" units="concentration" />

FIGURE 2: The units abbreviation scheme proposed early 2000.

In November, Warren met with the SBML1 development team at the ISCB in Tokyo, Japan. It was
agreed that one of the areas where CellML and SBML should be interoperable if possible was the area of
units. The SBML team considered the triplet-based form of units definition in CellML too complex to parse,
and suggested breaking down the strings into their individual components, each with their own attributes.
This seemed reasonable. The SBML spec at that time didn’t allow a scale factor on each quantity, so this
was added to SBML and then the two specs could basically agree. At the end of the November meeting, the
proposed CellML specification of units looked something like that shown in Figure 3.

<!-- the <units_abbreviation_table> appears inside a <model> element -->
<units_abbreviation_table>

<units abbreviation="dimensionless" />

<units abbreviation="concentration">
<unit exponent="1" scale="n" type="mol" />
<unit exponent="-3" scale="m" type="m" />

</units>
</units_abbreviation_table>

<!-- the <variable> element appears inside a <component> element -->
<variable name="A" units="concentration" />

FIGURE 3: The units scheme agreed on after discussions with the SBML team.

3 Units Specification 12 January 2001

One of the key features ensuring robustness and re-usability of CellML components and models is the
requirement that all variables and bare numbers have a set of units declared for them. This allows the
connection of components and models where the units on variables that are to be mapped to one another
are different (assuming that they are still of the same dimensionality), and for the consistency checking of
equations.

CellML provides a dictionary of standard units that may be used in variable declarations and attached to
bare numbers in math. This dictionary consists of the base SI units, the standard set of derived SI units, and

1http://www.cds.caltech.edu/erato/

http://www.cellml.org/private/progress reports/20010110 meeting minutes.pdf 3

some additional units commonly found in the types of biological models defined using CellML. References
to these units should make use of the actual name of the units, rather than the standard abbreviation, thus
avoiding confusion between units and scale factors. The full sets of base and derived SI units are shown in
Figure 8 and Figure 9 respectively and the additional units are given in Figure 10. The full list of units that
any CellML processing application should understand is given in Figure 4.

ampere1 dimensionless3 joule2 lumen2 numberof3 sievert2

becquerel2 farad2 katal2 lux2 ohm2 steradian2

calorie3 gram3 kelvin1 meter1 pascal2 tesla2

candela1 gray2 kilogram1 metre1 radian2 volt2

celsius3 henry2 liter3 mole1 second1 watt2

coulomb2 hertz2 litre3 newton2 siemen2 weber2

FIGURE 4: The dictionary of units keywords that CellML processing applications are expected to recognise.
Keywords marked with a superscript of 1 are base SI units, those with a superscript of 2 are derived SI units,
and those with a 3 are additions to the standard units defined purely for the convenience of model authors

using CellML.

CellML also provides a facility whereby new units can be defined in terms of the units defined in the
dictionary. This functionality allows the creation of complex units (made up of the products of simple
units), define imperial units (which are expressed as a scaled version of an SI unit), and even create units
that require an offset (such as Fahrenheit.) This allows model authors to work with whatever set of units
they feel comfortable in, secure in the knowledge that their models can be integrated with those of other
authors using other units.

New units are defined using the <units> element, which has a name attribute, the value of which is
used to reference the units in variable declarations or on bare number elements. The contents of a <units>
element is a sequence of <unit> elements, where each unit corresponds to one of the basic quantities, the
product of which will be the final units type.

Every <unit> element may contain no content and may have up to five attributes. The most important
of these, and the only one which is required, is the type attribute. The type attribute is used to set the
base quantity for the current <unit> element, and its value must correspond to a string from the standard
units dictionary, or to the value of the name of some previously defined units.

The optional offset attribute is used to shift the transformation between the current units and the
base unit being referenced by the type attribute. This should only be necessary to define the Fahrenheit
temperature scale. If the offset attribute is not present, it assumes a default value of 0.

The scale attribute, if present, can be used to indicate a scale attribute for the unit type. If its value
is a letter, it must be from the standard set of unit pre-multiplier symbols given in Figure 5. If its value is
an integer, then the type is pre-multiplied by 10 to the power of this number. If no scale attribute value is
specified, it is assumed that the unit type stands alone i.e., is pre-multiplied by one.

The combination of scale, offset and type is then raised to some power equal to the value of the
exponent attribute. This should be an integer. If no exponent attribute value is specified, it is assumed
that the unit occurs once i.e., the exponent attribute has a default value of one. Note that an exponent
attribute value of "0" (zero) has the effect of removing the parent <unit> element from the current units.

Finally a multiplier attribute can be used to pre-multiply the result so far by a further scale factor,
allowing the introduction of floating point scale factors. This could be used, for instance, to define a “pound”
unit in terms of the SI kilogram.

The offset attribute presents some mathematical problems in unit conversion, so some restrictions
must be placed on its use. If the offset attribute is present on a <unit> element, it must be the sole

http://www.cellml.org/private/progress reports/20010110 meeting minutes.pdf 4

symbol name factor symbol name factor

Y yotta 1024 d deci 10−1

Z zetta 1021 c centi 10−2

E exa 1018 m milli 10−3

P peta 1015 u micro 10−6

T tera 1012 n nano 10−9

G giga 109 p pico 10−12

M mega 106 f femto 10−15

k kilo 103 a atto 10−18

h hecto 102 z zepto 10−21

da deka 101 y yocto 10−24

FIGURE 5: The set of letters that may be used in the scale attribute on a <unit> element and the corre-
sponding scale factors that will pre-multiply the unit.

<unit> element within a <units> element. That units element then defines a straightforward conversion
according to the following formula (where “Type” refers to the unit being defined):

x Type = (multiplier x + offset)(scale type) exponent

Complex units are the product of numerous basic quantities, and are created by placing several <unit>
elements inside a single <units> element. The conversion between the new units and the product of the
units named in the type attributes of the <unit> elements is given by the following formula:

x units = [m1 (s1 t1) e1] [m2 (s2 t2) e2] ... [mn (sn tn) en] x

It is not possible to use the offset attribute on any <unit> element with an exponent attribute
with value other than "1" or "-1", or that is inside a <units> element containing another <unit>
element with a positive exponent value. That is, a unit whose conversion involves an offset may not
appear in a product on the “top line” of a units definition. Model authors may only create complex units
from previously defined simple units that involve an offset in their conversion if they follow similar rules
about exponents. These rules also apply to units defined with the celsius keyword from the standard
dictionary — this unit is calculated with an offset from the base SI unit Kelvin.

Here are some practical examples of the effect of these rules: it is possible to define units corresponding
to degrees fahrenheit (in fact these are defined in the CellML fragment in Figure 6). It is also possible to
define, for example, inches per degree fahrenheit, but not fahrenheit inches or degrees fahrenheit squared.
In the latter cases, a unit involving an offset appears in product on the top line of the units definition.

The CellML fragment in Figure 6 contains the definition of two simple units. In practice, software
would usually want to perform the inverse transformation: i.e., given a number in the newly defined units,
software would want to convert that back into SI units so that it could be used in simulation.

The first <units> element is used to define a litre (where we assign the new units the abbreviation
"l" which doesn’t clash with the keyword litre from the standard dictionary of units). In the example
a litre is defined as 1000 cubic centimetres. It would also be possible to define a litre as one thousandth
of a cubic metre or using any number of possible multipliers and scales. The formula we obtain from the
<units> definition is:

x l = 1000 x (c metre) 3

http://www.cellml.org/private/progress reports/20010110 meeting minutes.pdf 5

<units name="l">
<unit multiplier="1000" exponent="3" scale="c" type="metre" />

</units>

<units name="fahrenheit">
<unit multiplier="0.5555556" offset="-32.0" type="celsius" />

</units>

FIGURE 6: Some examples demonstrating the use of the <units> and <unit> elements.

The second <units> element is used to define a degrees fahrenheit as a function of degrees celsius.
The formula we obtain from this <units> element is:

x fahrenheit = 0.5555556 (x - 32.0) celsius

The definition of some complex units is shown in Figure 7, where the definition of the later units is
based on the earlier definitions. In the first units element, second is re-named time. In the second units
element, concentration is defined as milli-moles per litre. Finally, flux is defined in terms of change
of concentration with respect to time.

<units name="time">
<unit type="second" />

</units>

<units name="concentration">
<unit scale="m" type="mole" />
<unit exponent="-1" type="litre" />

</units>

<units name="flux">
<unit type="concentration" />
<unit exponent="-1" type="time" />

</units>

FIGURE 7: Further examples of units definition including the definition of complex units.

4 Changes Post January 12 2001

Just when you think you have something good going, Poul Nielsen waltzes (struts?) in and decides he’s not
happy with it. Not long after we had what we thought was a complete units scheme with documentation
suitable for inclusion in the CellML specification (above), Poul started recommending changes. These
changes were the result of numerous close readings of the ”A Short Introduction To CellML” paper being
written for inclusion in the July edition of The Philosophical Transactions of the Royal Society of London

http://www.cellml.org/private/progress reports/20010110 meeting minutes.pdf 6

(numerous other changes to CellML resulting from the writing of this paper are described in the January 15
meeting minutes2.) A quick summary of the changes and the justifications are as follows:

1. The scale attribute on the <unit> element was re-named the prefix attribute. This is what the
people at NIST call it, and as we hope to be a respected standards organisation like NIST, we should
follow existing standards ourselves wherever possible.

2. The type attribute on the <unit> element was re-named the units attribute. The word “type” was
too ontology-like: Poul favoured a re-naming to units, Warren favoured a re-naming to name ref,
and Melanie suggested units ref. Basically, we wanted something that could be thought of as
consistent with everything else, and since we’d already broken consistency with SBML with the
previous change, it didn’t really matter if we became more inconsistent. Using units is consistent
with the use of <variable> elements and also all referencing schemes throughout CellML.

3. It was decided that the values of the prefix attribute on the <unit> element should be the full
name of the prefixes as they appear in the NIST table to be consistent with the values of the units
attribute. So "milli" should be used in place of "m". This also neatly sidesteps the mu/u/micro
problem.

4. The numberof keyword was removed from the units dictionary. Poul didn’t like numberof be-
cause it was a quantity (like “length”) rather than a unit, and because there is implied integer behaviour
that we possibly don’t want. He suggested that the word items would be more technically correct.
This keyword was left out of the paper, but may yet be re-introduced into the CellML specification
after correspondence with the SBML folks.

5 Tables of SI and Additional CellML Units

base quantity name symbol

length metre (or meter) m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

FIGURE 8: The SI base units.

E-mail questions, criticism, submissions or info to info@cellml.org
Input document last modified : Mon Feb 02 15:25:02 NZDT 2004

2http://www.cellml.org/private/progress reports/20010115 meeting minutes.html

http://www.cellml.org/private/progress reports/20010110 meeting minutes.pdf 7

quantity name symbol in base units in other SI units

plane angle radian rad m · m−1

solid angle steradian sr m2
· m−2

frequency hertz Hz s−1

force newton N m · kg · s−2 J/m
pressure pascal Pa m−1

· kg · s−2 N/m2

energy, work, heat joule J m2
· kg · s−2 N · m

power, radiant flux watt W m2
· kg · s−3 J/s

electric charge coulomb C s · A A · s
electric potential volt V m2

· kg · s−3
· A−1 W/A

capacitance farad F m2
· kg−1

· s4
· A2 C/V

electric resistance ohm Ω(R) m2
· kg · s−3

· A−2 V/A
conductance siemens S m−2

· kg−1
· s3

· A2 A/V
magnetic flux weber Wb m2

· kg · s−2
· A−1 V · s

magnetic flux density tesla T kg · s−2
· A−1 Wb/m

inductance henry H m2
· kg · s−2

· A−2 Wb/A
luminous flux lumen lm cd · sr
illuminance lux lx m−2

· cd · sr
activity becquerel Bq s−1

absorbed dose gray Gy m2
· s−2 J/kg

dose equivalent sievert Sv m2
· s−2 J/kg

catalytic activity katal kat s−1
· mol

FIGURE 9: The derived SI units.

quantity name symbol in SI units

dimensionless dimensionless
energy, work, heat calorie cal x · calorie = 4.1868 · x · joule
temperature celsius ◦C x · celsius = (x + 273.15) · kelvin
mass gram g x · gram = 0.001 · x · kilogram
volume litre (or liter) l x · litre = 0.001 · x · metre3

amount numberof

FIGURE 10: The additional units added to CellML’s standard units dictionary to make it convenient for model
authors to define basic quantities.

