
My CellML 1.2 Draft

Andrew Miller – ak.miller@auckland.ac.nz

2

Git Repository (DocBook):
 http://repo.or.cz/w/cellml-draft-miller.git
HTML Version:
 http://www.cellml.org/Members/miller/draft-normative-spec-andrews-preferred/toplevel.xhtml

About the draft

Proposes a number of changes over CellML 1.1.

Form of specification is different, and more formal:
 1. It is purely a specification, not a tutorial. Tutorials can be
created separately. This cleanly separates normative material
from non-normative.
 2. It uses precise terminology, modelled after that used by
the IETF define Internet protocols – the philosophy is that the
specification should be precise, so implementing the
specification carefully is enough to ensure interoperability.

3

Primary and secondary specs

CellML 1.0 and CellML 1.1 are very general – they are just a container for math,
and you can describe a diverse range of systems using that mathematics.

This is good for extensibility – it means that I can create perfectly valid CellML 1.0
or 1.1 models that do far more than was contemplated when the specifications were
drawn up.

But... it is bad for interoperability – there is more than one way to represent the
same thing (e.g. events), tools will often only support one form, and there is no
specification.

The 1.2 draft is again very broad. It is the primary specification, and it introduces
the concept of a secondary specification. Secondary specifications are restrictive –
models can say they comply with a secondary spec by only using things allowed by
it – tools can say they can process every possible model compliant with it.

Many changes will be possible with a new secondary spec, without changing the
primary spec.

4

Git Repository (DocBook):
 https://github.com/A1kmm/cellml-dae-events-secondary
HTML Version:
 http://www.cellml.org/Members/miller/draft-secondary-spec-dae-events/toplevel.xhtml

DAE / ODE / Scalar Reals Spec

To demonstrate the concept, I created a secondary specification (written
against the 1.2 draft) for systems involving DAEs, ODEs, using a
reasonable set of common mathematical operators, and defined only on
real-valued scalars – this is still a work in progress.

It will support intervention events using an infinitesimally delayed piecewise
representation – a new operator is required to support delays, and this
secondary specification will use that operator solely as the limit from above
the current time to represent the value just before an event (that triggered
the event).

Types

The draft 1.2 specification proposes a type attribute, for data
type information.

type='real' is defined to mean real numbers.
Everything other value is open for secondary specifications
to define.

Secondary specifications can then define things like vector
and scalar.

A further primary specification would be needed if we want
to let users define their own types, as it would need new
elements in the XML structure (secondary specifications
only restrict interpretation, they can't add new elements).
Only real valued variables need units.

Connections

The draft simplifies connections. Directionality of
connections is not mathematically meaningful information in
a declarative model.
 x = f(y) in component C1,
 x = g(z) in component C2,
if x is connected between C1 and C2, it just means C1.x and
C2.x it is the same variable.

Also, having a map_components element is unnecessary
complexity – the draft makes component_1 and
component_2 attributes of the connection.

Reactions

CellML's niche is to represent mathematical models as
mathematics, with all problem domain specific information
(for example, information that is not part of the mathematical
model, but provides chemical, biological, or physical
context) being placed in the metadata.

Reactions in CellML 1.0 and 1.1 are a deviation from this
principle (and for this reason, most software doesn't
implement them well anyway). The 1.2 draft removes them.

People wanting reactions should either use SBML, which is
designed to include this type of information, or encode
models directly in mathematical form, and use metadata to
describe the corresponding reactions.

Grouping and encapsulation

Grouping serves two purposes in CellML 1.0 and 1.1.
1. It provides a general mechanism to provide information
about the physical relationship of things (using the
containment relationship and with user-defined extension
groupings). These things do not affect the mathematical
interpretation of the model or the validity at the CellML level.
2. It provides for encapsulation, which does affect whether a
connection at the CellML level is valid or not.

The first case is better served by metadata. The draft therefore
simplifies grouping by:
 1. removing the group and relationship_ref elements – things
like containment should instead be defined using metadata.
 2. adding an encapsulation element specifically for describing
encapsulation.

Discussion

Questions?

Comments / Discussion?

Suggestions?

Criticism?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

