
The CellML API:
An update

Andrew Miller – ak.miller@auckland.ac.nz

2

Introduction

The CellML API is a reusable contract
between an application and an
implementation of the CellML API.

In Auckland, we produce both the API and a
complete implementation of the API.

This talk will cover:
 1. Briefly: An overview of the API.
 2. What has changed in the last year.

3

Structure of the API

Key parts of the API
1. Interfaces and Object Model
2. DOM (optional for implementations)
3. MathML DOM
4. RDF API
5. API Core
6. Older Extension Modules (Integration,
Export Language Definition, Code
Generation, Validation, Units Simplification /
Expansion, MathML-to-Language services,
Context)

4

IDL and Language Support

Interfaces written in IDL.

IDL processed to produce bindings (e.g. C++
headers) and bridges between bindings.

API written in C++ against one particular
binding.

Can currently call the API from C++, Java,
Python. Previously: Javascript (XPCOM) and
over CORBA.

5

Generics & Reflection Service

The CellML Generics & Reflection Service (CGRS) is a new
service that allows applications to:
 1. Retrieve information about the types, operations, and
attributes in the API programmatically (reflection)
 2. Write generic code that can call API operations and set
and retrieve attribute data in response to user requests,
without needing to hard code the structure of the API into
the application.

This is useful for:
 1. Making better language bindings for dynamic languages.
 2. Creating generic user interfaces that allow access to the
 full API.

6

Better Python Bindings

The CellML API now has significantly better Python
bindings.

Built on the Generics & Reflection Service.

Dynamically object-orientated, not interface orientated – can
call any operation / access any attribute supported by an
object, without worrying about what interface it is on.

Supports Python's iterator protocol – easier & more
idiomatic iteration through models.

7

TeLICeM Service

We created a new format called TeLICeM (“text language
for the input of CellML models”) as a common text-based
input format for CellML models (including their content
MathML).
def model SimpleDAENonLinear as
 def comp main as
 var a : dimensionless { init: 1 };
 var d : dimensionless;
 var c : dimensionless;
 var t : dimensionless;
 def math as
 d(a)/d(unknown-element) = (4{unit: ""} / 7{unit: ""}) * (2{unit: ""} * power(d, 3{unit: ""}) + c);
 enddef;
 def math as
 2{type: "integer",unit: ""} * (-1{type: "integer",unit: ""} * a + power(d, 3{unit: ""}) + c) = 0{type: "integer",unit: ""};
 enddef;
 def math as
 3{type: "integer",unit: ""} * (power(d, 3{unit: ""}) + -1{type: "integer",unit: ""} * (3{type: "integer",unit: ""} * c)) = 0{type:
"integer",unit: ""};
 enddef;
 enddef;
enddef;

TeLICeM Service parses and serialises TeLICeM format.

8

SED-ML Support

The CellML API now includes code that lets you work with SED-
ML (simulation experiment description markup language).

It could be separated out in future – SED-ML isn't CellML specific.
It's convenient to include it in the CellML API for now.

There are two parts:
 SED-ML Processing Service – traverse through a SED-ML
 description – one interface per SED-ML element.

 SED-ML Running Service – run a simulation on a model and get
results (currently on CellML models supported, but designed to be
extensible).

You can also use the running service to just apply SED-ML
changes to models if you want to do your own simulations.

9

Documentation

One major item of feedback we had about the API in our survey
was that we needed to improve our documentation.

We have now consolidated all our documentation in one place, at
http://cellml-api.sf.net/

It is now based entirely on the Doxygen included within the source
tree.

We have also added more tutorials to help you get started with
using the API.

There is still lots of room for improvement on documentation – let
us know if there is something specific you think is poorly
documented so we can improve it.

http://cellml-api.sf.net/

10

Building & Binaries

Another theme in the feedback in our survey on the API was that
the API was hard to build, and that it would be nice if there were
binaries available.

We have streamlined our build system using CMake – so it is
easier to build on most platforms.

The libxml2 dependency made building harder on Windows,
because it forced people to find compatible libxml2 binaries or
build libxml2 themselves. We fixed that by including a version of
libxml2 with the CellML API that gets built by CMake.

Our build system now automatically produces and uploads CellML
API binaries on Linux (x86 / x86_64), Windows (x86) and Mac
(PPC, x86, x86_64 universal binaries) – binaries are packed as
an 'SDK', which most users can use instead of building from
source.

11

Questions

Questions?

Comments?

Suggestions?

Criticism?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

