Simulation of Experimental Artefacts in the Electrophysiology of Small Cells

Jim Wilson
Faculty of Kinesiology
University of Calgary

26 Feb 2010 CellML Workshop,
Auckland
ELECTROPHYSIOLOGICAL RECORDINGS FROM CARTILAGE CELLS
Cartilage Cells - Chondrocytes
Patch clamp allows direct electrical connectivity with the cell interior. Allows characterization of cell electrophysiology.
Electrode Attached to a Chondrocyte

15 µm
CellML Model of Small Cell
Seal Currents

- K^+
- Na^+
- Cl^-

Graph showing relationship between V_m (mV) and I (pA) for K^+, Na^+, and Cl^-, with dashed line representing net seal current and solid line representing linear seal current.
2 Independent Variables

![Diagram showing independence of variables R and V over time.](image)
Apparent Resting Potential

- $R_s = 30\, \Omega$
- $R_s = 10\, \Omega$
- $R_s = 3\, \Omega$

Graph showing $V_m (\text{mV})$ and $I_e (\text{pA})$ relationships.

- Stable depolarized
- Unstable
- Stable polarized

E_K
Conclusion

The standard electrophysiological recording techniques can be dramatically compromised for small cells.

Mathematical modelling allows for the correct interpretation of the measured data.

Modified recording protocols can be designed to mitigate the artefacts of the recording electrode.
Acknowledgements

Dr. Wayne Giles
Dr. Robert Clark
Dr. Umberto Banderali
Faculty of Kinesiology,
University of Calgary
Single Channel Recordings

25 single channel recordings approximate one whole-cell.