
ModML
A model representation language
derived from an existing functional

programming language

The status quo

  Two approaches taken by modelling languages:
  aim at a particular domain (e.g. SBML). Everyone

uses a different language for their own domain –
making multiscale modelling harder. Innovation in
modelling is slower because the language has to
catch up.

  aim to represent a particular a mathematical
construct generally (e.g. CellML models usually
represent DAEs). Models are in terms of DAEs, and
metadata attempts to give them meaning. This
gives large file sizes, duplicated information, and
the risk of out-of-date metadata.

Procedural vs declarative

  Modellers have traditionally used procedural
languages like FORTRAN and MATLAB.
  More powerful – Turing complete, but...
  Conflation of numerical algorithms with the models.
  Can usually only do one thing with the model.
  Poor composability.

  CellML and SBML are declarative – avoid the
above problems but are less powerful.

Functional languages

  Pure functional programming languages
provide a compromise between power and
usability.

  Side-effects that might stop composition are
avoided – each function computes a value
based solely on the input parameters, with no
hidden state.

  Functional programming can be used to
express a datastructure declaring the model
structure.

Generic language, domain
specific modelling

  The increased power
of functional
programming
languages allows
modules, within
models, to convert
domain specific
modules into generic
terms.

ModML core
Example of ModML core code:

mymodelBuilder = do
 x <- newRealVariable
 y <- newRealVariable
 initialValue {- at time -} 0 {-, -} x {- = -} 10
 initialValue {- at time -} 0 {-, -} (derivative x) {- = -} 10
 (derivative (derivative x)) `newEq` (realConstant 10)
 initialValue 0 y (-5)
 initialValue 0 (derivative y) 0
 (y .+. x) `newEq` (realConstant 5)

  initialValue is a short-hand for an equation that equates an expression to a real value at a
particular time.
  This code uses a monad which produces the model through a series of steps.
  This approach allows composition simply by combining monadic expressions:
combinedModel = do
 modelToBeComposed1
 modelToBeComposed2

ModML units

  ModML core doesn't include physical units
support, but this can be built on top of ModML
core by a simple transformation.

  The support for units is part of the model, not
the tool – it describes how to translate units-
supporting ModML into ModML core.

  Units checking occurs during the translation to
plain ModML.

Biochemical reaction networks

  Support for reaction networks is not built in to
ModML core.

  Instead, a function translates from a reaction
datastructure into ModML core. This function is
part of the model, but is re-used in many
models.

  This module could intelligently link up
references to the same species in the same
physical compartment, allowing for better
composability.

More advanced functionality

  Models could include information about
chemical structure and energetics of species
and reactions.

  Automated checking for conservation of charge,
mass, energy, or particular atoms.

Multi-domain modelling

  Because the core isn't specific to any problem
domain like biochemical reaction networks,
natural support for new domains can be added.

  Models can cross multiple domains.
  Software for processing models doesn't need to

know about domains – only ModML core.

Metadata

  ModML core allows for arbitary metadata to be
attached to variables or equations.

  Model transformations can generate metadata
at the same time as they generate the DAEs –
so there is no duplication as in other languages.

  Expressing data only once ensures the two
forms don't become out of syncronisation.

