ModML

A model representation language
derived from an existing functional
programming language



The status quo

- aim at a particular domain (e.g. SBML). Everyone
uses a different language for their own domain —
making multiscale modelling harder. Innovation in
modelling is slower because the language has to

catch up.

= alm to represent a particular a mathematical
construct generally (e.g. CellML models usually
represent DAEs). Models are in terms of DAESs, and
metadata attempts to give them meaning. This
gives large file sizes, duplicated information, and
the risk of out-of-date metadata.



Procedural vs declarative

- More powerful — Turing complete, but...

- Conflation of numerical algorithms with the models.
= Can usually only do one thing with the model.

- Poor composability.

= CellML and SBML are declarative — avoid the
above problems but are less powerful.



Functional languages

orovide a compromise petween power anc

usabillity.

- Side-effects that might stop composition are
avoided — each function computes a value
based solely on the input parameters, with no
hidden state.

= Functional programming can be used to
express a datastructure declaring the model
structure.



Generic language, domain
specific modelling

programming
languages allows
modules, within
models, to convert
domain specific
modules into generic

terms. ModML
tool tool




ModML core

y <- newRealVariable

initialValue {- at time -} 0 {-, -} x {- = -} 10
initialvValue {- at time -} 0 {-, -} (derivative x) {- = -} 10
(derivative (derivative x)) newEqg (realConstant 10)

initialValue 0 y (-5)
initialValue 0 (derivative y) O
(y .+. xX) "newEqg (realConstant 5)

« initialValue is a short-hand for an equation that equates an expression to a real value at a
particular time.
« This code uses a monad which produces the model through a series of steps.
« This approach allows composition simply by combining monadic expressions:
combinedModel = do

modelToBeComposedl

modelToBeComposed?



ModML units

core by a simple transformation.

= T'he support for units is part of the model, not
the tool — it describes how to translate units-
supporting ModML into ModML core.

= Units checking occurs during the translation to
plain ModML.



Biochemical reaction networks

« Instead, a function translates from a reaction
datastructure into ModML core. This function is
part of the model, but is re-used in many
models.

= This module could intelligently link up
references to the same species in the same
physical compartment, allowing for better
composability.



More advanced functionality

nemice ucture and energetics of Specile
and reactions.

- Automated checking for conservation of charge,
mass, energy, or particular atoms.



Multi-domain modelling

gomailn like piochemical reactic e{WOrKS,
natural support for new domains can be added.

- Models can cross multiple domains.

= Software for processing models doesn't need to
know about domains — only ModML core.



Metadata

- Model transformations can generate metadata
at the same time as they generate the DAEs —
so there is no duplication as in other languages.

- Expressing data only once ensures the two
forms don't become out of syncronisation.



