
The CellML API 

The CellML API (application programming 
interface) provides a programmatic interface to 

CellML models. 



Specifying the API 

  The API is specified using OMG IDL (interface 
definition language). 

  This provides a machine-readable 
representation of the attributes and operations 
that can be performed on the CellML API. 

  As with all IDL specified interfaces, the CellML 
API is entirely object orientated. 



Language neutrality 

  OMG IDL is language neutral. It does not 
specify which programming language the API is 
implemented in, or called from. 

  Language mappings describe what the API 
looks like in a particular programming language. 

  Bridges connect an implementation in one 
language to a caller in another. 



The Physiome C++ Mapping 

  I have produced an implementation of the 
CellML API in C++. 

  The language mapping used is called the 
Physiome C++ Mapping (PCM). 

  The existing CORBA C++ mapping was not 
used because it was considered too 
cumbersome to use when CORBA is not used. 



Generating headers and bridges 

  Because IDL is machine readable, it is possible 
to automatically generate language specific 
interfaces and bridges. 

  Using omniidl, an extensible IDL compiler, I 
have produced two-way PCM √ CORBA and 
PCM √ XPCOM bridges, as well as header files 
for PCM and XPCOM objects. 

  The CORBA bridge can be used to access the 
API via CORBA from a range of languages. 



The base interface 

  The base interface, which all objects 
implement, is called XPCOM::IObject (because 
it has operations resembling those on COM 
objects). 

  It supports reference counting, as well as 'query 
interface' and fetching an identifier which 
uniquely identifies the object (for comparison 
purposes). 



CellMLElement 

  All CellML elements implement an interface 
called CellMLElement. This interface has a 
range of operations and attributes to: 

  Insert and remove CellML and extension 
elements. 

  Get/set the cmeta ID attribute. 
  Allows arbitrary user-data (not extension 

elements) to be attached. 



Sets 

  Sets are lists of elements in a CellML model. 
  Sets can produce 'iterator' objects, which can 

be used to iterate through the objects in the set. 
  Sets are always live: changes to the model will 

immediately change what the iterators see. 



Model 

  Represents a CellML model. 
  Different (1.0 vs 1.1) versions of the model can 

be fetched. This just changes the namespace, it 
doesn't 'flatten' the model. 

  A serialised XML representation of the model 
can be retrieved. 

  All RDF/XML in the model can be fetched as a 
collated document, either as a string or as a 
DOM document. 



Model 

  Models act like a factory object, and allow all 
other elements to be created for subsequent 
insertion. 

  It is possible to access the group, connection, 
and import sets in a given model. 

  It is also possible to get a set of groups with a 
given relationship ref. 



Model 

  There are three types of component / units sets: 
  localComponents: Components which are 

described in this model document only. 
  modelComponents: Components either 

described in this model document, or imported 
into it. 

  allComponents: All components, including 
those which are not directly imported from 
imported models. 



Imports 

  CellMLImport represents an import element. 
  Imports can be instantiated, meaning that the 

imported model is loaded into the API 
implementation. 

  For access and reference counting purposes, 
imported model elements are treated as if they 
were a child of the import element. 



Maths 

  The MathList interface allows iteration over 
maths, as well as insertion of new maths. 

  MathML apply elements and their descendants 
are accessed and modified using the Content 
MathML DOM API. 

  My implementation of the API includes a 
complete implementation of the DOM and 
content MathML DOM APIs. 



Events in CellML 

  The CellML Event model is closely based of 
DOM Events. 

  Can register an event listener with a 
CellMLEventTarget (any CellMLElement), and 
be notified when changes / insertions / 
deletions are made. 

  Can also use DOM Events to monitor specific 
parts of MathML or extension elements if 
required. 



Bootstrapping 

  The CellMLBootstrap interface allows access to 
model loading / parsing facilities, as well as 
DOM facilities. 

  As IDL is entirely object-orientated, it provides 
no mechanism to get the initial bootstrap object. 
This is done on a mapping-by-mapping basis 
(e.g. in C++ there is a special function to get a 
CellMLBootstrap object). 



My implementation 

  Written in C++ using the PCM. 
  Built on top of the W3C DOM (all operations on 

models go through my DOM implementation). 
  Includes comprehensive unit tests. 
  Portable. Has been built on Linux (32 & 64 bit, 

big & little endian), AIX, OS X (x86 and PPC), 
and Win32 (MSVC & MingW32). Should be 
easy to get going anywhere with a standard C+
+ compiler. 



Optional extensions 

  The CellML API provides a number of optional 
extensions, which I will describe next. 

  All optional extensions are cleanly separated 
from the API, in the sense that they use only 
API functions to access the model. 



The CellML Context 

  The CellML Context allows tools to maintain a 
hierarchy of open models. 

  Tools and services can also register 
themselves with the CellML Context, so other 
tools can find them, allowing tool-to-tool 
communication. 

  Interfaces can be 'annotated' by tools, to 
facilitate tool inter-operation. 



CellML Code Generation Service 

  The CCGS is an optional extension to the 
CellML API, which allows procedural code to be 
generated. 

  The CCGS firstly computes an internal 
datastructure representing a sequence of 
'procedural steps', then translates that 
sequence into a procedural language. 

  It should be possible to add support for other 
languages by changing the second part of the 
process. 



CellML Integration Service 

  The CellML Integration Service allows models 
to be integrated, and run. 

  The CIS uses the CCGS to generate C code, 
and compiles and loads this code dynamically. 

  CIS supports integrators from SUNDIALS 
CVODE (US Department of Energy) and from 
the GNU Scientific Library. 



Comments and discussion 


