
The CellML API 

The CellML API (application programming 
interface) provides a programmatic interface to 

CellML models. 



Specifying the API 

  The API is specified using OMG IDL (interface 
definition language). 

  This provides a machine-readable 
representation of the attributes and operations 
that can be performed on the CellML API. 

  As with all IDL specified interfaces, the CellML 
API is entirely object orientated. 



Language neutrality 

  OMG IDL is language neutral. It does not 
specify which programming language the API is 
implemented in, or called from. 

  Language mappings describe what the API 
looks like in a particular programming language. 

  Bridges connect an implementation in one 
language to a caller in another. 



The Physiome C++ Mapping 

  I have produced an implementation of the 
CellML API in C++. 

  The language mapping used is called the 
Physiome C++ Mapping (PCM). 

  The existing CORBA C++ mapping was not 
used because it was considered too 
cumbersome to use when CORBA is not used. 



Generating headers and bridges 

  Because IDL is machine readable, it is possible 
to automatically generate language specific 
interfaces and bridges. 

  Using omniidl, an extensible IDL compiler, I 
have produced two-way PCM √ CORBA and 
PCM √ XPCOM bridges, as well as header files 
for PCM and XPCOM objects. 

  The CORBA bridge can be used to access the 
API via CORBA from a range of languages. 



The base interface 

  The base interface, which all objects 
implement, is called XPCOM::IObject (because 
it has operations resembling those on COM 
objects). 

  It supports reference counting, as well as 'query 
interface' and fetching an identifier which 
uniquely identifies the object (for comparison 
purposes). 



CellMLElement 

  All CellML elements implement an interface 
called CellMLElement. This interface has a 
range of operations and attributes to: 

  Insert and remove CellML and extension 
elements. 

  Get/set the cmeta ID attribute. 
  Allows arbitrary user-data (not extension 

elements) to be attached. 



Sets 

  Sets are lists of elements in a CellML model. 
  Sets can produce 'iterator' objects, which can 

be used to iterate through the objects in the set. 
  Sets are always live: changes to the model will 

immediately change what the iterators see. 



Model 

  Represents a CellML model. 
  Different (1.0 vs 1.1) versions of the model can 

be fetched. This just changes the namespace, it 
doesn't 'flatten' the model. 

  A serialised XML representation of the model 
can be retrieved. 

  All RDF/XML in the model can be fetched as a 
collated document, either as a string or as a 
DOM document. 



Model 

  Models act like a factory object, and allow all 
other elements to be created for subsequent 
insertion. 

  It is possible to access the group, connection, 
and import sets in a given model. 

  It is also possible to get a set of groups with a 
given relationship ref. 



Model 

  There are three types of component / units sets: 
  localComponents: Components which are 

described in this model document only. 
  modelComponents: Components either 

described in this model document, or imported 
into it. 

  allComponents: All components, including 
those which are not directly imported from 
imported models. 



Imports 

  CellMLImport represents an import element. 
  Imports can be instantiated, meaning that the 

imported model is loaded into the API 
implementation. 

  For access and reference counting purposes, 
imported model elements are treated as if they 
were a child of the import element. 



Maths 

  The MathList interface allows iteration over 
maths, as well as insertion of new maths. 

  MathML apply elements and their descendants 
are accessed and modified using the Content 
MathML DOM API. 

  My implementation of the API includes a 
complete implementation of the DOM and 
content MathML DOM APIs. 



Events in CellML 

  The CellML Event model is closely based of 
DOM Events. 

  Can register an event listener with a 
CellMLEventTarget (any CellMLElement), and 
be notified when changes / insertions / 
deletions are made. 

  Can also use DOM Events to monitor specific 
parts of MathML or extension elements if 
required. 



Bootstrapping 

  The CellMLBootstrap interface allows access to 
model loading / parsing facilities, as well as 
DOM facilities. 

  As IDL is entirely object-orientated, it provides 
no mechanism to get the initial bootstrap object. 
This is done on a mapping-by-mapping basis 
(e.g. in C++ there is a special function to get a 
CellMLBootstrap object). 



My implementation 

  Written in C++ using the PCM. 
  Built on top of the W3C DOM (all operations on 

models go through my DOM implementation). 
  Includes comprehensive unit tests. 
  Portable. Has been built on Linux (32 & 64 bit, 

big & little endian), AIX, OS X (x86 and PPC), 
and Win32 (MSVC & MingW32). Should be 
easy to get going anywhere with a standard C+
+ compiler. 



Optional extensions 

  The CellML API provides a number of optional 
extensions, which I will describe next. 

  All optional extensions are cleanly separated 
from the API, in the sense that they use only 
API functions to access the model. 



The CellML Context 

  The CellML Context allows tools to maintain a 
hierarchy of open models. 

  Tools and services can also register 
themselves with the CellML Context, so other 
tools can find them, allowing tool-to-tool 
communication. 

  Interfaces can be 'annotated' by tools, to 
facilitate tool inter-operation. 



CellML Code Generation Service 

  The CCGS is an optional extension to the 
CellML API, which allows procedural code to be 
generated. 

  The CCGS firstly computes an internal 
datastructure representing a sequence of 
'procedural steps', then translates that 
sequence into a procedural language. 

  It should be possible to add support for other 
languages by changing the second part of the 
process. 



CellML Integration Service 

  The CellML Integration Service allows models 
to be integrated, and run. 

  The CIS uses the CCGS to generate C code, 
and compiles and loads this code dynamically. 

  CIS supports integrators from SUNDIALS 
CVODE (US Department of Energy) and from 
the GNU Scientific Library. 



Comments and discussion 


