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Outline
• What is Chaste?
• How does Chaste use CellML?
• Current status and next steps
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Chaste history
• Commenced as a 4-week taught course in

Software Engineering in May 2005
• May 2005-September 2007 part-time activity, 1

day/week involving a group of around 6-10 PhD
students and post-docs

• September 2007-date EPSRC-funding for two
full time post-docs to join the team

• Focus remains primarily on cardiac
electrophysiology, soft tissue modelling
(including cardiac electro-mechanics) and cancer
modelling

• Development methodology a key feature
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Current capability
• Cardiac

• Monodomain and bidomain for a wide range of practical problems

• Efficient parallel implementation

• Open source (LGPL) release available

• Soft Tissue Mechanics
• Non-linear (finite deformation) elasticity

• Discrete cell-based models

• Cancer
• Focus on colorectal cancer and tumour spheroids

• Off-lattice cell-based simulations

• Variety of cell models and field equations
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How does Chaste use CellML?
• Cardiac ionic cell models described in CellML
• Automatic conversion to C++ code using Chaste

classes by PyCml
• Key concerns are correctness and efficiency of

generated code
• The preDiCT project aims to achieve faster

than real time cardiac simulations using
Chaste

Use of CellML in Chaste – p. 5/18



Computer Science perspective
• CellML looks like a (domain specific)

programming language
• Interesting dynamic evaluation (semantics)
• Static (i.e. compile-time) checks
• Provably correct optimisations
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Achieving faster simulations
• Hand optimisation doesn’t scale
• Compiler optimisation is helpful
• But compilers only perform general optimisations
• There are also domain-specific optimisations

• Staging work in an ODE solver
• Lookup tables
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Staging by Partial Evaluation
• An ODE solver is essentially a loop over time
• Some computations are the same at every

time-step and depend only on information
available within the model
• So perform them once only

• The context is too complicated for a compiler to
do this for us so use a partial evaluator

• A partial evaluator is an automatic tool that
pre-computes parts of a program known at
compile time
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Lookup Tables
• Many expressions depend only on the

transmembrane potential V
e.g.βh = 1

e−(V +45)/10+1

• Usually V takes values in the range [-100,60] mV
• We can thus:

• Tabulate expression values prior to simulation
• Use linear interpolation to look up a value for

the expression given V
• This is faster than computing an exponential
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Automatic Lookup Tables
• Analysis of when to use tables can be automated

• Check variables used to compute the
expression

• Check for occurrence of expensive functions
• A posteriori error analysis to evaluate accuracy

penalty
• Can evaluate error in functionals of the

solution
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Automatic Lookup Tables
• We can allow variables other than V to occur in

the expression
• Constants, and variables whose values depend

only on constants, are OK
• Key point: is the value known when the table

is generated?
• This kind of analysis is done by partial

evaluation
• So do partial evaluation then lookup tables
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Optimisation Framework
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Experimental Results — Single Cell
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So what can PyCml do now?
• Check models for units consistency, and apply

automatic conversions
• Generate C++ code compatible with Chaste

completely automatically
• Apply partial evaluation and lookup tables

automatically(producing CellML or Chaste code)

• Generate a decoupled cell model which solves
itself using backward Euler (for some models)

• Various options to fine-tune these processes
• Also generate Matlab code fora posteriori error analysis,

etc.
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Next Steps
• Improvements to ODE solver performance in

tissue simulations
• e.g. changes to code structure for better cache

utilisation

• Automate other optimising transformations
• e.g. detect slow/fast currents

• Base work upon the CellML API
• Utilise (biological) metadata
• Use CellML and/or SBML in Cancer Chaste
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Decoupled Cell Models
• In a tissue simulation, solve cell models using

backward Euler
• V n

m
obtained from PDEs

• Update linear ODEs directly:

dui

dt
= ai(Vm) + bi(Vm)ui

⇒ un

i
=

un−1

i
+ ∆tnai(V

n
m

)

1 − ∆tnbi(V n
m

)

• Update remaining ODEs using Newton’s method:

g(un) := u
n
− u

n−1
− ∆tnf(un, Vm) = 0
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Some Chaste Results

20 mm2, monodomain, Noble’98
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