
Use of CellML in Chaste
Chaste: a general purpose simulation package aimed

at multi-scale, computationally demanding models

Jonathan Cooper

Computing Laboratory, University of Oxford

Use of CellML in Chaste – p. 1/18



Outline
• What is Chaste?
• How does Chaste use CellML?
• Current status and next steps

Use of CellML in Chaste – p. 2/18



Chaste history
• Commenced as a 4-week taught course in

Software Engineering in May 2005
• May 2005-September 2007 part-time activity, 1

day/week involving a group of around 6-10 PhD
students and post-docs

• September 2007-date EPSRC-funding for two
full time post-docs to join the team

• Focus remains primarily on cardiac
electrophysiology, soft tissue modelling
(including cardiac electro-mechanics) and cancer
modelling

• Development methodology a key feature

Use of CellML in Chaste – p. 3/18



Current capability
• Cardiac

• Monodomain and bidomain for a wide range of practical problems

• Efficient parallel implementation

• Open source (LGPL) release available

• Soft Tissue Mechanics
• Non-linear (finite deformation) elasticity

• Discrete cell-based models

• Cancer
• Focus on colorectal cancer and tumour spheroids

• Off-lattice cell-based simulations

• Variety of cell models and field equations

Use of CellML in Chaste – p. 4/18



How does Chaste use CellML?
• Cardiac ionic cell models described in CellML
• Automatic conversion to C++ code using Chaste

classes by PyCml
• Key concerns are correctness and efficiency of

generated code
• The preDiCT project aims to achieve faster

than real time cardiac simulations using
Chaste

Use of CellML in Chaste – p. 5/18



Computer Science perspective
• CellML looks like a (domain specific)

programming language
• Interesting dynamic evaluation (semantics)
• Static (i.e. compile-time) checks
• Provably correct optimisations

Use of CellML in Chaste – p. 6/18



Achieving faster simulations
• Hand optimisation doesn’t scale
• Compiler optimisation is helpful
• But compilers only perform general optimisations
• There are also domain-specific optimisations

• Staging work in an ODE solver
• Lookup tables

Use of CellML in Chaste – p. 7/18



Staging by Partial Evaluation
• An ODE solver is essentially a loop over time
• Some computations are the same at every

time-step and depend only on information
available within the model
• So perform them once only

• The context is too complicated for a compiler to
do this for us so use a partial evaluator

• A partial evaluator is an automatic tool that
pre-computes parts of a program known at
compile time

Use of CellML in Chaste – p. 8/18



Lookup Tables
• Many expressions depend only on the

transmembrane potential V
e.g.βh = 1

e−(V +45)/10+1

• Usually V takes values in the range [-100,60] mV
• We can thus:

• Tabulate expression values prior to simulation
• Use linear interpolation to look up a value for

the expression given V
• This is faster than computing an exponential

Use of CellML in Chaste – p. 9/18



Automatic Lookup Tables
• Analysis of when to use tables can be automated

• Check variables used to compute the
expression

• Check for occurrence of expensive functions
• A posteriori error analysis to evaluate accuracy

penalty
• Can evaluate error in functionals of the

solution

Use of CellML in Chaste – p. 10/18



Automatic Lookup Tables
• We can allow variables other than V to occur in

the expression
• Constants, and variables whose values depend

only on constants, are OK
• Key point: is the value known when the table

is generated?
• This kind of analysis is done by partial

evaluation
• So do partial evaluation then lookup tables

Use of CellML in Chaste – p. 11/18



Optimisation Framework

CellML

Valid? Exit

CellML CellML CellML∗

Inputs

Results

Simulation

framework

Code

Yes

No

PE LT

Use of CellML in Chaste – p. 12/18



Experimental Results — Single Cell

Use of CellML in Chaste – p. 13/18



So what can PyCml do now?
• Check models for units consistency, and apply

automatic conversions
• Generate C++ code compatible with Chaste

completely automatically
• Apply partial evaluation and lookup tables

automatically(producing CellML or Chaste code)

• Generate a decoupled cell model which solves
itself using backward Euler (for some models)

• Various options to fine-tune these processes
• Also generate Matlab code fora posteriori error analysis,

etc.

Use of CellML in Chaste – p. 14/18



Next Steps
• Improvements to ODE solver performance in

tissue simulations
• e.g. changes to code structure for better cache

utilisation

• Automate other optimising transformations
• e.g. detect slow/fast currents

• Base work upon the CellML API
• Utilise (biological) metadata
• Use CellML and/or SBML in Cancer Chaste

Use of CellML in Chaste – p. 15/18



Acknowledgements
The Chaste team:

• Joe Pitt-Francis
• Miguel Bernabeau
• Pras Pathmanathan
• James Osborne
• Alex Fletcher
• et al.

Funding:

Key publications:
• Pitt-Franciset al., Phil Trans Roy Soc A, 2008

• Pitt-Franciset al., Computer Physics Communications (submitted)

http://web.comlab.ox.ac.uk/chaste
Use of CellML in Chaste – p. 16/18

http://web.comlab.ox.ac.uk/chaste


Decoupled Cell Models
• In a tissue simulation, solve cell models using

backward Euler
• V n

m
obtained from PDEs

• Update linear ODEs directly:

dui

dt
= ai(Vm) + bi(Vm)ui

⇒ un

i
=

un−1

i
+ ∆tnai(V

n
m

)

1 − ∆tnbi(V n
m

)

• Update remaining ODEs using Newton’s method:

g(un) := u
n
− u

n−1
− ∆tnf(un, Vm) = 0

Use of CellML in Chaste – p. 17/18



Some Chaste Results

20 mm2, monodomain, Noble’98

Use of CellML in Chaste – p. 18/18


	Outline
	Chaste history
	Current capability
	How does Chaste use CellML?
	Computer Science perspective
	Achieving faster simulations
	Staging by Partial Evaluation
	Lookup Tables
	Automatic Lookup Tables
	Automatic Lookup Tables
	Optimisation Framework
	Experimental Results --- Single Cell
	So what can PyCml do now?
	Next Steps
	Acknowledgements
	Decoupled Cell Models
	Some Chaste Results

