

More complex
datatypes in

CellML

Andrew Miller <ak.miller@auckland.ac.nz>
Auckland Bioengineering Institute, University of Auckland

The current situation

 In CellML 1.1 and 1.2, everything is currently
treated as a real number.

 There are no functions, vectors, and other
constructs which would be useful for many
kinds of modelling.

 Without functions, some constructs (such as
referring to time-delayed variables) are untidy
to implement.

Improving modelling

A number of typing systems have been
considered for CellML 1.2.
One option would be to make CellML a typed
lambda calculus system. In this system,
mathematical operations can be performed on
types to convert them to other types.
Types are stored in ordinary variables, just like
real numbers are now, and can be imported.

Real numbers

 It makes sense to aggregate the type system
with the units system, so that all static checking
occurs in one place.

 This suggests built in real numbers like
real_metres which encompass both the real
number and the type.

Example: complex numbers

 Compute a type from parameters
 <m:apply
 id="cartesian_complex_type_function_eqn"><m:eq/>
 <m:ci>complex_type_function</m:ci>
 <m:lambda>
 <m:bvar><m:ci>base_type</m:ci></m:bvar>
 </m:lambda>
 <m:apply><c12:vector_type />
 <!-- First argument: type of vector elements...
 -->
 <m:ci>base_type</m:ci>
 <!-- Second argument: size of vector -->
 <m:cn c12:type="real_dimensionless">2</m:cn>
 </m:apply>
 </m:apply>
i.e.

Functions on types

 This is a function which takes a type, and
returns a type, allowing great flexibility when
required.

 This great flexibility would allow for
parameterised types to be easily created.

 Types have types as well: a function which
takes a type and returns a type.

Implementation issues?

 Efficiently implementing the general case of
anything more than real numbers is not simple -
need complex type inference.

 It has been proposed that we have secondary
specifications which cut down what is required
to be implemented.

 This would mean that tools can choose the
level of complexity they want to support.

Existing solutions

 CellML is not unique in the need to represent
different types of data structures.

 Another option would be to make a successor
to CellML a subset, or derivative, of an existing
language.

 Functional languages like Standard ML and
Haskell may already support the features we
need, while still being 'pure functional' and so
allowing us to keep the procedural details
separate from the model.

Discussion

 What capabilities are required for models?
 How general should support be?
 Simple but powerful vs more complex and

constrained languages.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

