

Modularity in CellML

David Nickerson & Martin Buist

Division of Bioengineering National University of Singapore

Background

- Mathematical models of cellular physiology are rapidly increasing in biophysical detail:
 - electrophysiology and mechanics;
 - + calcium dynamics;
 - + mitochondrial energetics;
 - + signalling cascades;
 - + ...
- Models routinely now consist of large systems of differential & algebraic equations and many parameters.
- Modelling studies typically require multiple models, each with many parameterizations.

The Problem

- How do model authors:
 - describe such complex models?
 - share them with colleagues and the scientific community?
 - reuse bits and pieces of existing models?
 - publish them?

• Several (almost) independent sub-problems:

- the mathematical model(s);
- parameterizations of the mathematical model(s);
- instantiation of the models as specific and reproducible computational simulations;
- extraction of specific "simulation observations" from simulation datasets.
- Machine vs human interpretation and interaction.

Our solution

Annotated CellML models....

http://www.cellml.org

Model repositories

- Freely available & online model repositories.
- Contain models described in standard formats.
- Curated to various levels of "correctness".
- Examples:
 - http://www.cellml.org/models/
 - http://www.biomodels.net/biomodels/

New models and model components

model

- Answering novel questions generally requires the development of new models in combination with existing models:
 - reparameterizing existing models;
 - combining existing models;
 - altering the dynamics of certain components of the model;
 - extending models to include new behaviour.

Model parameterization

- Each mathematical model may be parameterized for many different scenarios.
- Specializing generic mathematical model for specific purpose.

Mechanics of Modularity in CellML

- CelIML 1.1:
 - import element;
 - use of variables in setting initial_value attribute.

Mechanics of Modularity in CellML

• CelIML 1.2 (?):

- variable typing, sets:
 - avoid current necessity to recompose model hierarchies to expose species rate variables;
 - simply add new fluxes to the set of all fluxes for that species.

Enhancing Modularity in CellML

- Model repository (PMR2):
 - model workspaces;
 - DVCS;
 - curation and authorship;
 - programatic access.
- Tool support:
 - C++ API exists and generally works, why aren't people using it?
- Model component curation:
 - what does it mean to use a model component outside its original model?
 - annotation? licensing? PMR2...

Enhancing Modularity in CellML

 Guidelines on the use of CelIML 1.1 to ensure we all create models suitable for re-use by the community wherever possible...

References

- Nickerson & Buist (2008): Prog Biophys Mol Biol. 98(1):38–51; doi: 10.1016/j.pbiomolbio.2008.05.006
- http://www.cellml.org/publications

Acknowledgment

• A*STAR BMRC Grant #05/1/21/19/383.

