Methods for Semantic Cell Modelling and Convenient Simulation

SHIMAYOSHI Takao^{1,2} ¹ASTEM Research Institute of Kyoto ²Cell/Biodynamics Simulation Project, Kyoto University

Current Status of Kyoto Model

- Kyoto Model:
 - Comprehensive cardiac myocyte model
 - Recent model published
 - Kuzumoto, et. al. *Prog Biophys Mol Biol.* 2008. doi: 10.1016/j.pbiomolbio.2007.07.005
 - CellML files
 - Being written for several variants of Kyoto Model

Modelling & Simulation

Methods for Modelling

Computer Aided Modelling

- Troublesome task in editing models
 - Composition of components

- Modelling with Ontology
 - Semantic annotation to model components
 - Intelligent assistance using Ontology

Edit of Component

Composition of Model

Convertibility to CellML

- Export to CellML
 - Straightforward conversion
 - Usable as an authoring tool of CelIML
- Import from CelIML
 - Requires to assign ontology IDs to elements
 - A tool available to intelligently estimate ontology ID

Experimental Protocol

 Simulation needs a model and an experimental protocol

Wet experiment

Experimental protocol

Cell / tissue

Computer simulation

Experimental protocol

Computational model

PEPML

- Physiological Experimental Protocol ML
 - XML-based general format
 - Procedural representation

vs. declarative representation

 Model independent description using ontologies

Reference of Model Variable

• Without ontology, model-specific

• With ontology, model-independent

Difficulties in Simulation

Boundary Conditions

- Models formulated as DAE:
 ODE + simultaneous algebraic equations
- Consistent set of boundary conditions for correct simulation of DAE models
 - Which variables are given the values externally?

$$\begin{cases} p \cdot u - (q+a) \cdot v = c\\ (q+a) \cdot u^2 + p \cdot v^2 = d \end{cases}$$

Difficulty

- Difficult to assign consistent boundary conditions to a model with hundreds of variables
- Wrong boundary conditions result in – Impossibility of calculation
 - Oblivious unintended calculation

Setup of Boundary Conditions

- Assistance to assign a consistent set of boundary conditions based on graph theory
 - Automatic extraction of candidate variables to be bounded

cyclic AMP metabolism module [Saucerman 2003]

$$[G_{s\alpha GTP}] + [G_{s\alpha GTP} : AC] = [G_{s\alpha GTPtot}]$$

$$[G_{s\alpha GTP} : AC] + [AC] = [AC_{tot}]$$

$$[PDE_{inhib}] + [PDE] = [PED_{tot}]$$

$$[PDE_{inhib}] + [IBMX_{1}] = [IBMX_{tot}]$$

$$[G_{s\alpha GTP}][AC] = K_{G_{s\alpha}}[G_{s\alpha GTP} : AC]$$

$$[PDE_{1}[IBMX_{1}] = K_{IBMX}[PDE_{inhib}]$$

Automatic Optimization

Optimization of simultaneous equations
 – Reduction of the degree

Automatic Optimization

Optimization of simultaneous equations
 – Reduction of the degree

Evaluation

- Beta signalling model [Saucerman 2003]
 - Unoptimized naïve math expressions
- Configuration of boundary conditions
 - #Candidates
 - Manual: 3060
 - With the proposed method: 516 (16.9%)
- Optimization of equations
 - Computation time
 - Without optimization: 31.5 [s]
 - With automatic optimization: 20.5 [s] (64.9%)

Conclusion

- Easy modelling and simulation with information technology
 - Modelling with ontology
 - Protocol description format
 - Convenient simulation using graph theory

 Prototype software tools available on http://www.biosim.med.kyoto-u.ac.jp/~simayosi/research/tools/ Thank you!