Interfacing LabHEART with CellML

Jose Luis Puglisi, PhD
Department of Physiology
Loyola University Chicago

Introduction

Biologists are the final users of our models

 They should be able to run and modify the model

Excitation-Contraction Coupling

 "The succession of events that take place since the moment the cardiac cell is excited until a contraction is generated"

Bers, 2001

by D.M. Bers

by D.M. Bers

Modeling Excitation-Contraction Coupling

- We need a model that links the three main players:
 - Action Potential

- Force/Shortening
- Calcium Transient

LabHEART 4.9.6

Negroni's Formulation

Testing the model

β-adrenergic Stimulation:
 Does it increase the cross-bridge cycling?

Protein Kinase A does not alter unloaded velocity of sarcomere shortening In skinned rat cardiac trabeculae

Janssen & De Tombe, 1977. Am. J. Physiol.

Phosphorilation of troponin I by PKA increases relaxation rate and Cross-bridge cycling kinetics in mouse ventricular muscle.

Kentish et al. 2001. Circulation Research

Effects of Isoproterenol

L-type Ca Channel ↑

I_{Ks} channel ↑

SR Ca pump ↑

Myofilament Ca sensitivity \(\psi \)

Effects of Isoproterenol

Force simulation with/out altering Xb cycling

Discussion

 Our simulations agree with the hypothesis that the cross bridge cycling is increased by isoproterenol

 Force-Frequency Relationship have to be revisited.

Future work

Thanks for your attention