
The Future of the CellML Specification

Status overview

 The latest stable specification is CellML
1.1. It was last changed in 2002, and
marked as frozen in 2006.

 There has been discussion of many other
possible features since then.

 The development of CellML 1.2 provides
an opportunity for new features to be
added.

 Community input on the specification will
greatly aid this process.

Managing community input

 Initial messages about particular features
get sent to cellml-discussion@cellml.org

 Discussion on specific features take place
at: https://tracker.physiomeproject.org

 Decisions are made based on the
consensus from discussions

 Unofficial drafts with the proposed
changes are encouraged

mailto:cellml-discussion@cellml.org
https://tracker.physiomeproject.org/

Specification format

 The specification will be purely
normative; examples and justification can
go in a separate document.

 We are using DocBook (XML) to represent
CellML 1.2.

 Mathematical equations are represented
using MathML.

 DocBook gets converted into various
formats as needed.

Sharing drafts

 We are using git, a distributed VCS to
create unofficial drafts

 Anyone can easily create their own fork
and make it world readable

 Changes can be merged between people
using this workflow, keeping change
history.

 No official central repository, but certain
revisions are good bases for future work.

CellML design philosophy

 CellML 1.1 was inconsistent on some
desgin aspects. Need a unifying
philosophy for the core specification.

 Core CellML specifies only the underlying
mathematics:

− Declarative, not procedural
− No biological or other domain specific

information in the core
 Core CellML is general and not limited by

what we anticipate can be computed.

Use of formal language

 CellML 1.2 drafts use well defined words
in the style of an RFC specification.

 A number of ambiguities and
contradictions from CellML 1.1 have been
corrected in this process.

 Features like units conversions on
connections, which must be implemented
consistently for interoperability, are now
mandatory

Secondary specifications

 CellML 1.0, 1.1, and drafts of 1.2 are too
general for anyone to implement it
entirely.

 Secondary specifications define a subset
of CellML which software can implement
entirely, allowing certainty in the model
sharing process.

 Similar purpose, but more general, than
the CellML 1.0/1.1 CellML Subset

Reactions

 Reaction elements do not fit with the
underlying mathematics only philosophy
of CellML

 Reactions should be in metadata, layered
on top of the normal CellML mechanisms

 The reaction element is not in CellML 1.2
drafts.

 Sarala has worked out how to describe
reactions in metadata as a best practice.

Containment

 CellML 1.1 provided a generalised
grouping mechanism, and included
definitions of encapsulation and
containment.

 Encapsulation is for structuring the
mathematics, containment describes the
biology.

 Containment and user-defined groups
don't belong in CellML core. Solution is to
replace group with an encapsulation
element.

Connection directionality

 In CellML 1.1, connections have directions
 This implies a procedure, and not a

network of declarative mathematics
 Directionless connections would fit with

the philosophy underlying CellML better.
 There is a draft implementing this.

Why structured types

 In CellML 1.1, everything is a real number
(with units)

 CellML 1.1 models wanting to use
matrices, vectors, sets, or λ-functions
have to improvise

 This can make models inelegant, and it
also makes model decomposition more
complex

Types – built in types

 One proposal has been to create an in
specification dictionary of datatypes, like
vector_real.

 All real numbers in these types would
have the same units.

 This system lacks generality; it would be
necessary to wait for the next version of
CellML to add new data types!

Types – new type element

 Another option for types is to define a
series of new elements for deriving types
(like setof, vectorof, and so on).

 This would look similar to the current unit
system

 There would be a built in mechanism for
real numbers with units

 Would add more complexity to CellML
 Re-usability would be limited without

parameterised types

Types – typed λ calculus

 The third option is to make types first
class mathematical objects (as in typed λ
calculus) with associated variables

 Real number types include the units, so
the units element won't be needed

 The relationships between types are
specified with mathematical operators

 Connections, and functions which return
types, allow for parameterised types.

Namespace policy

 CellML 1.1 changed the namespace on all
elements, even those that didn't change

 From a compatibility standpoint, this is a
bad thing

 A better approach is for namespaces to
only change on elements that have
changed their semantics

 This requires that CellML software check
for unrecognised elements that look like
they are from a future specification

