
The Future of the CellML Specification

Status overview

 The latest stable specification is CellML
1.1. It was last changed in 2002, and
marked as frozen in 2006.

 There has been discussion of many other
possible features since then.

 The development of CellML 1.2 provides
an opportunity for new features to be
added.

 Community input on the specification will
greatly aid this process.

Managing community input

 Initial messages about particular features
get sent to cellml-discussion@cellml.org

 Discussion on specific features take place
at: https://tracker.physiomeproject.org

 Decisions are made based on the
consensus from discussions

 Unofficial drafts with the proposed
changes are encouraged

mailto:cellml-discussion@cellml.org
https://tracker.physiomeproject.org/

Specification format

 The specification will be purely
normative; examples and justification can
go in a separate document.

 We are using DocBook (XML) to represent
CellML 1.2.

 Mathematical equations are represented
using MathML.

 DocBook gets converted into various
formats as needed.

Sharing drafts

 We are using git, a distributed VCS to
create unofficial drafts

 Anyone can easily create their own fork
and make it world readable

 Changes can be merged between people
using this workflow, keeping change
history.

 No official central repository, but certain
revisions are good bases for future work.

CellML design philosophy

 CellML 1.1 was inconsistent on some
desgin aspects. Need a unifying
philosophy for the core specification.

 Core CellML specifies only the underlying
mathematics:

− Declarative, not procedural
− No biological or other domain specific

information in the core
 Core CellML is general and not limited by

what we anticipate can be computed.

Use of formal language

 CellML 1.2 drafts use well defined words
in the style of an RFC specification.

 A number of ambiguities and
contradictions from CellML 1.1 have been
corrected in this process.

 Features like units conversions on
connections, which must be implemented
consistently for interoperability, are now
mandatory

Secondary specifications

 CellML 1.0, 1.1, and drafts of 1.2 are too
general for anyone to implement it
entirely.

 Secondary specifications define a subset
of CellML which software can implement
entirely, allowing certainty in the model
sharing process.

 Similar purpose, but more general, than
the CellML 1.0/1.1 CellML Subset

Reactions

 Reaction elements do not fit with the
underlying mathematics only philosophy
of CellML

 Reactions should be in metadata, layered
on top of the normal CellML mechanisms

 The reaction element is not in CellML 1.2
drafts.

 Sarala has worked out how to describe
reactions in metadata as a best practice.

Containment

 CellML 1.1 provided a generalised
grouping mechanism, and included
definitions of encapsulation and
containment.

 Encapsulation is for structuring the
mathematics, containment describes the
biology.

 Containment and user-defined groups
don't belong in CellML core. Solution is to
replace group with an encapsulation
element.

Connection directionality

 In CellML 1.1, connections have directions
 This implies a procedure, and not a

network of declarative mathematics
 Directionless connections would fit with

the philosophy underlying CellML better.
 There is a draft implementing this.

Why structured types

 In CellML 1.1, everything is a real number
(with units)

 CellML 1.1 models wanting to use
matrices, vectors, sets, or λ-functions
have to improvise

 This can make models inelegant, and it
also makes model decomposition more
complex

Types – built in types

 One proposal has been to create an in
specification dictionary of datatypes, like
vector_real.

 All real numbers in these types would
have the same units.

 This system lacks generality; it would be
necessary to wait for the next version of
CellML to add new data types!

Types – new type element

 Another option for types is to define a
series of new elements for deriving types
(like setof, vectorof, and so on).

 This would look similar to the current unit
system

 There would be a built in mechanism for
real numbers with units

 Would add more complexity to CellML
 Re-usability would be limited without

parameterised types

Types – typed λ calculus

 The third option is to make types first
class mathematical objects (as in typed λ
calculus) with associated variables

 Real number types include the units, so
the units element won't be needed

 The relationships between types are
specified with mathematical operators

 Connections, and functions which return
types, allow for parameterised types.

Namespace policy

 CellML 1.1 changed the namespace on all
elements, even those that didn't change

 From a compatibility standpoint, this is a
bad thing

 A better approach is for namespaces to
only change on elements that have
changed their semantics

 This requires that CellML software check
for unrecognised elements that look like
they are from a future specification

