In Pursuit of a Working Model...

... The Curation Process

Catherine Lloyd

MAURICE WILKINS CENTRE FOR MOLECULAR BIODISCOVERY

Talk Outline

The problems with publishing CelIML as a solution Creating and curating CelIML models Future goals

The JAde Hymgg Problems...

model creation x Error! x translated for journal publication x Error! x the article is reviewed... x Error! x ... and hopefully published x Error! x it's read and interpreted x Error! x & finally implemented

CellML has evolved as a potential solution to the inconsistencies between computational and published models

It's an XML-based markup language which can be used to describe biological models

It's flexible structured to encourage model exchange, reuse and further development

Original Code Published Paper CellML

%-----Calc the L-type Ca current-----

```
[CfCa,RevPCa]=
CalcConstantfield(Cai,Cao,2, Vm); %Ca
         [CfK,RevPK] =
CalcConstantfield(Ki,Ko,1, Vm); %K
         [CfNa,RevPNa] =
CalcConstantfield(Nai,Nao,1, Vm); %Na
         if (count ==1 && currenttime == 0)
           Va = -74.0078:
         else
           Va = Vm;
         end
         if (count ==0)
          [mcal, hcal,n] =
calcRateConst(1,Va,0,Cai,mcal,hcal,count,dt);
%Calc m and h
          ICaLNa =
(0.00005*PCAL*CfNa)*mcal*hcal;
          ICaLK = (0.001 * PCAL *
CfK)*mcal*hcal:
          %ICaLCa = (PCAL * CfCa*mcal*hcal)
%original
          ICaLCa = (PCAL * CfCa*mcal*hcal):
          ICaL = ICaLCa + ICaLK+ICaLNa:
         else
          ICaLNa =
(0.00005*PCAL*CfNa)*mcal*hcal;
          ICaLK = (0.001 * PCAL *
                                               I_{k}
CfK)*mcal*hcal;
          ICaLCa = (PCAL * CfCa*mcal*hcal);
          ICaL = ICaLCa + ICaLK+ICaLNa;
          [mcal, hcal] =
calcRateConst(1,Va,0,Cai,mcal,hcal,count,dt);
%Calc m and h
         end
```

The cell membrane is modeled as a capacitor connected in parallel with variable resistances and batteries representing the different ionic currents and pumps. The electrophysiological behavior of a single cell can hence be described with the following differential equation (23)

$$\frac{dV}{dt} = -\frac{I_{los} + I_{aim}}{C_n}$$
(1)

where V is voltage, t is time, L_{im} is the sum of all transmembrane ionic currents, I_{stim} is the externally applied stimulus current, and C_m is cell capacitance per unit surface area.

Similarly, ignoring the discrete character of microscopic cardiac cell structure, a 2D sheet of cardiac cells can be modeled as a continuous system with the following partial differential equation (23)

$$\frac{\partial V}{\partial t} = -\frac{I_{im} + I_{atim}}{C_m} + \frac{1}{\rho_s S_s C_m} \frac{\partial^2 V}{\partial x^2} + \frac{1}{\rho_s S_s C_m} \frac{\partial^2 V}{\partial y^2} \qquad (2)$$

where ρ_x and ρ_y are the cellular resistivity in the x and y directions, S_x and S_y are the surface-to-volume ratio in the x and y directions, and I_{ion} is the sum of all transmembrane ionic currents given by the following equation

$$= I_{Ka} + I_{K1} + I_{La} + I_{Ka} + I_{Ka} + I_{CaL} + I_{VaCa} + I_{NaK} + I_{pCa} + I_{pR} + I_{pCa} + I_{bCa} + I_{bNa}$$
(3)

where I_{NaCa} is Na⁺/Ca²⁺ exchanger current, I_{NaK} is Na⁺/K⁺ pump current, I_{pCa} and I_{pK} are plateau Ca²⁺ and K⁺ currents, and I_{bCa} and I_{bac} are background Ca²⁺ and K⁺ currents.

<component name="membrane">

<variable units="millivolt" public_interface="out" cmeta:id="membrane_V"
name="V" initial_value="-86.2" />

<variable units="joule_per_mole_kelvin" public_interface="out" name="R" initial_value="8314.472" />

<variable units="kelvin" public_interface="out" name="T" initial_value="310" /> <variable units="coulomb_per_millimole" public_interface="out" name="F" initial value="96485.3415" />

<variable units="microF" public_interface="out" name="Cm" initial value="0.185" />

<variable units="micrometre3" public_interface="out" name="V_c" initial_value="0.016404" />

<variable units="millisecond" public_interface="in" name="time" />
<variable units="picoA_per_picoF" public_interface="in" name="t_K1" />
<variable units="picoA_per_picoF" public_interface="in" name="t_L2A" />
<variable units="picoA_per_picoF" public_inte

<math xmlns="http://www.w3.org/1998/Math/MathML">

```
<apply><eq />
    <apply><diff />
      <bvar><ci>time</ci></bvar>
      <ci>V</ci>
    </apply>
    <apply><times />
      <apply><divide />
        <apply><minus />
         <cn cellml:units="dimensionless">1</cn>
        </apply>
        <cn cellml:units="dimensionless">1</cn>
      </apply>
      <apply><plus /><ci>i_K1</ci>
        <ci>i to</ci><ci>i Kr</ci>
        <ci>i Ks</ci><ci>i CaL</ci>
        <ci>i NaK</ci<ci>i Na</ci>
        <ci>i b Na</ci<ci>i NaCa</ci>
        <ci>i b Ca</ci><ci>i p K</ci>
        <ci>i_p_Ca</ci><ci>i_Stim</ci>
      </apply>
    </apply>
   </apply>
 </component>
```

The Model Repository www.cellml.org/models

The CellML model repository began life as a set of examples to illustrate how the language could be applied and to test its features as it evolved

It later became a repository of previously published biological models, which were encoded in CellML based on the literature

The Model Repository

www.cellml.org/models

There are now >300 models in the repository including:

- Signal transduction pathways
 - Metabolic pathways
- Electrophysiological models
 - Immunological models
 - Cell cycle models
 - Muscle models
- Mechanical models & Constitutive laws

Model Creation & Curation

Initially, CellML models were written by hand in a text editor, and there was no way to test the models for consistency or completeness - they were simply checked by eye to see if they accurately represented the published model.

Since then tools, such as PCEnv and COR, have been developed to write and run CellML models, and these can also be used to curate the models in the repository.

Model Curation: The Theory

Of the 300 models in the repository $\sim \frac{1}{2}$ have been curated

- Level 0: Not curated
- Level 1: Consistent with the published paper
- Level 2: Checked for (i) typos, (ii) unit consistency, (iii) completeness, (iv) not over-constrained, and (v) the model reproduces the published results;

• Level 3: the model is checked for the extent to which it satisfies physical constraints such as conservation of mass, momentum, charge, etc. (conducted by domain experts)

Point to Note

Model curation does not always imply "fixing" a model. A model may be valid CelIML, and a true representation of the published paper, but there can be other reasons why the a CelIML model won't run

e.g. Saucerman *et al.* 2003 includes coupled, non-linear equations. The CellML model is valid, but currently the simulation tools PCEnv and COR are unable to handle this type of equation.

Model Curation – The Practice

1) The CellML models are run in PCEnv and COR & any obvious typos and unit inconsistencies are fixed

COR provides error messages & renders the MathML as readable equations

2) The simulation output is compared with the results in the published paper

Physiome CellML Environment												
Ele Iools View Help												
🗋 💕 🖬 🖳 🛓	く 目目 目 (1)		110									
💊 🏟 👔			Membrane Potentia	(mV)								🔽 L 🔧 🛛
Туре	Value	Units	7									
E o ^v ∨	-86.2	millivolt	30 1	1				lan				
E O ^V R	8314.472	joule_per_mole_kelvin		\sim	\sim	\wedge	\wedge	\wedge	\sim	\sim	\wedge	\wedge
± °ĭ⊺	310	kelvin	Ó I \									
tter Trent	96485.3415	coulomb_per_millimole										
I III O'Cm III OV	0.185	micron-	-30									
t VP kpa	0.03	dimensionless	-40									
E o ^V a K1	5,405	nanoS per picoF	-50									
⊞ o ^V g_Kr	0.096	nanoS_per_picoF	-70									
⊞ o ^V Xr1	0	dimensionless	-80							<u>}</u>		\longrightarrow
± o ^V Xr2	1	dimensionless	0	10	20	30	40	50	60	70	80	90 100
	0.062	nanoS_per_picoF										x10*
⊞ ©'Xs	0	dimensionless	Traces: Channel / E	xchanger / Pump Cu	rrents (picoA/picoF) vs	Time (ms)						V L - 🥄
t± oʻg_Na ⊡ oV-	14.838	nano5_per_pico+		18 12 A	in the sta	70. 00						
E OVD	0 75	dimensionless										
E o ^V i	0.75	dimensionless	-1									
🗄 💁 Vg bna	0.00029	nanoS_per_picoF	-2									
⊞ o ^V g_CaL	0.000175	litre_per_farad_second	-3									
⊞ ⊜ ^v d	0	dimensionless	-4									
⊞ o ^V f	1	dimensionless	-5 -									
⊞ ⊚ [¥] fCa	1	dimensionless	-6									
⊞ oʻg_bca	0.000592	nanoS_per_picoF	-7									
l⊞ oʻg_to ⊡ oV-	0.294	nano5_per_pico+	-8									\longrightarrow
E oVr	1	dimensionless	0	10	20	30	40	50	60	70	80	90 100
E OVP NaK	1.362	picoA per picoF										x10 ⁴
⊞ o ^V K_mk	1	millimolar	Electrophysiological	Cell Diagram: dick ch	pappels to toggle display	v of graph traces abov	18					V t + 9
⊞ o ^V K_mNa	40	millimolar		and brogs and analysis	and the to be get and the	/	-					
⊞ o ^V K_NaCa	1000	picoA_per_picoF		i.e.	i.e.	L.	page 1	1.				
⊞ <mark>⊙</mark> ¥K_sat	0.1	dimensionless		"Na	'Na, b	'Ca,L Ca	'Na, Ca 2+ Ca ²	"p,Ca "Ci H	ı, b			
🗄 🌒 alpha	2.5	dimensionless							0			
te oʻgamma	0.35	dimensionless				001 Q [0000000000		XIIIIIIIIII S	111111111111117233			
⊞ o'Km_Ca	1.38	milimolar		·····(_)·······		Contraction of the second s						
	0.825	picoA per picoE					3Na*					
⊞ o ^V K pCa	0.0005	millimolar										
⊞ o ^V g_pK	0.0146	nanoS_per_picoF				JSR						
⊞ o ^V Ca_i	0.0002	millimolar										
⊞ o ^v Ca_o	2	millimolar		Calmodulin			NSR	Jup				
E o ^Y Ca_SR	0.2	millimolar			-			\bigcirc				
± oʻg	1	dimensionless			-Cart		Ca ²⁺	\sim				
Start time point	· · · · · · · · · · · · · · · · · · ·	millisecond		\frown	rel							
Start time point	0	O (ninisecond)		Troponin		\sim	Junit					
Point densitymax		50000 (points/grap	ⁿ /			Isequestrin	- Contraction					
End time point		10000 (millisecond)										
Absolute ε		1e-8										
Relative c		1E-6		d	ch.		· · · · · · ·	<u> </u>				
Variable Scale Factor		1.0						Y	A			
Rate Scale Factor		0.0	9860000000					A	A construction of the			
Maximum step size		U.U (pillicecond)		Y			3Na ⁺	K*	K+			
Alexandri step size		0.1 (Anisecond)		I _{Kr}	Ks	Чкі	I _{Na, K}	l _{to} l _r	ĸ			
Algorithm	BDF 1-5 with solve	×										
Integration Complete	10 - Servero											
	Export CSV	,										
Script Maccades Direlas	ving flux of L tune. Co. averation	8										
II II III III III IIII IIII IIII IIII IIII												

🛃 start 🥹 A model for human v...

😻 Downloads

🔮 Physiome CellML Envi...

EN 🔇 🕀 4:38 p.m.

3) Expert help is sought!

The model author is contacted and requests are made for missing parameters & equations, for general clarification and, where possible, the original code is retrieved

... often highlighting how error prone the publishing process is

The value of 'a' was indeed missing, it is 2.5218 (at temp = 286K). Also note that the value of delta-H for gamma should be 200240 rather than 200.24, this is an error in the Table (the period should have been a comma).

your guess is right: ko and k-o are 95 and 22/s, resp. They are not a function of voltage (as kv and k-v). I'll fix the bug in the table and make it clearer for the print version. Thank you for your interest in our work and your careful reading of the paper. Eq. 7 was printed wrong. Whilst proofreading the article for publication we found several misprints but we missed this one (hopefully the only one). You are right, the last two iron terms in Eq. 7 should be in the ferrous form as in the pathway diagram (Fig. 1). Also, k8 and k8_ should have their units swopped

Communication with the model authors also frequently results in their positive feedback on our CellML efforts

That's sounds wonderful, I'm glad you were able to get the code to match the published results. I'm also glad to hear about the student interested in our 2007 model, it's always nice to know that someone other than myself is interested in the models.

I was glad to see that you chose to simulate our model with your simulation set-up. I did not know about your system CellML. After my first look at it I thought it was an interesting tool, especially that it is coded in XML. I will explore further the capabilities of your system more carefully... Parenthetically, I have been following the basic progress of some of the "ML" initiatives for the last few years, namely your effort and the SBML project. I am delighted that you have chosen this model to use as an example in your repository. Quite exciting!

I am very flattered that you've chosen to put our models on your web site (which I've just had a look at and it is great!).

And, just occasionally, we become the "experts"!

I'm currently teaching Yates et al 2007's PLos Med paper to a class of Zoology grad students and struggling mightily to replicate the authors' results. **The CelIML model was extremely useful** in (1) identifying a typo in one of the equations in the published paper [the version on CelIML agreed with common sense and the graphical model in the paper] and (2) identifying the scaling relation used to calculate one of the parameters (mu) from the values of the other parameters.

Future Goals

To complete the curation of all the models in the repository... ideally such that they recreate the results in the published paper

To encourage model developers (and journals) to publish their models in CelIML code concurrent with their written paper

Acknowledgements

Curation Team: James Lawson & Penny Noble

Alan Garny & David Nickerson (for their enduring patience!)

Alan Garny, Andrew Miller & Justin Marsh (tool development)

All the model authors who have provided advice and feedback

Randall Britten & Poul Nielsen

