Visualisation of CellML Models

Sarala Dissanayake

Supervisors: Dr. Poul Nielsen and Dr. Matt Halstead
CellML

- CellML is an implementation-independent simulation modelling language.

- It is mainly used for understanding the dynamics of complex biological processes.
A reaction modelled in CellML; L + R → Rl
Providing Visual Support

CellML Structure
(Biophysical View)

Underlying Biology
(Biological View)
Workflow

CellML-XML Model

CellML-OWL Model

Biophysical Model

Biological Model

Biophysical View

Biological View
Modularising CellML Models

CellML-XML Model

Modularisation

Modularised CellML-XML Model
Generation of CellML-OWL

CellML-XML Model

Modularised CellML-XML Model

Generation of CellML-OWL

CellML-OWL Model
Linking CellML-XML & CellML-OWL

- CellML-XML Model
- Modularised CellML-XML Model
- CellML-OWL Model

Linking CellML-XML & CellML-OWL
Generation of Biophysical Model

- CellML-XML Model
 - Modularised CellML-XML Model
 - CellML-OWL Model
 - Generation of Biophysical Model
 - Biophysical Model
Annotating Biophysical Models

CellML-XML Model

Modularised CellML-XML Model

CellML-OWL Model

Biophysical Model

Annotation

Annotated Biophysical Model
Biophysical View

CellML-XML Model

Modularised CellML-XML Model

CellML-OWL Model

Biophysical Model

Annotated Biophysical Model

Linking to glyphs
Biophysical View

CellML-XML Model

Modularised CellML-XML Model

CellML-OWL Model

Biophysical Model

Annotated Biophysical Model
Applying Reducing Rules

The rule set for collapsing

\[
\begin{align*}
P & \quad E \quad P \quad E \\
& \quad \Rightarrow \quad P
\end{align*}
\]

\[
\begin{align*}
P & \quad E \quad P \\
& \quad \Rightarrow \quad P
\end{align*}
\]

\[
\begin{align*}
E & \quad P \quad E \\
& \quad \Rightarrow \quad P
\end{align*}
\]

\[
\begin{align*}
E & \quad P \quad E \\
& \quad \Rightarrow \quad P
\end{align*}
\]
Generation of Biological Model

- CellML-XML Model
 - Modularised CellML-XML Model
 - CellML-OWL Model
 - Biophysical Model
 - Annotated Biophysical Model
 - Biophysical View
 - Generic Model
 - Generation of Biological Model
 - Biological Model
Biological View

CellML-XML Model

Modularised CellML-XML Model

CellML-OWL Model

Biophysical Model

Annotated Biophysical Model

Generic Model

Biological Model

Biophysical View
Conclusion

Biophysical View

CellML Structure

Biological View

\[
\begin{align*}
\text{J}_R &= k_1 \left(R_l \right) \\
\text{J}_L &= k_1 \left(L \right) \\
\end{align*}
\]
Future work

- Enhancing the tool to support automated layout of the diagrams.
- Enhancing the ontologies to support reasoning.
Thank You