Software Tools & Techniques
Cell/Biodynamics Simulation Project
of Kyoto University

SHIMAYOSHI Takao
Project Introduction
Cell/Biodynamics Simulation Project

www.biosim.med.kyoto-u.ac.jp

• Leader: Prof. Noma

• Main Targets
 – Development of a comprehensive ventricular cell model: Kyoto Model
 • Membrane excitation, excitation contraction coupling, volume regulation, beta signalling, energy metabolism, etc.
 – Simulation of cardiac tissue & heart
 • Excitation propagation, mechanics, circulation dynamics, etc.
Software Packages

- **simBio** by Dr. Sarai
 - Cell model simulator in use
- **DynaBioS** by Dr. Hori, Dr. Lu
 - Platform for biosimulator in use
- **Cell modelling environment**
 - Editor and simulator under development, to be the next-generation system
simBio

- Java package for biological simulation
 - Solver of ordinary differential equations
- Object-oriented model composition similar to CellML
 - Each model component is coded as a class Reactor (component in CellML)
- COR can convert CellML files into simBio codes

www.sim-bio.org
DynaBioS core

Component-based architecture

Event-driven architecture

Component

User-described system behaviour

Simulation Scenario

Distributed computing

Easy componentization of existing applications

3D Viewer

Core

FEM solver

Cell Simulator

LV motion simulator

Component

Component

Component

Component

Component
Cell Modelling Environment
System Schema

- Cell Model
- Ontology
- Cell Structure
- Editor
- CellML Structure
- Simulator
- PEPML
- Edit
- Query
- Associate
- Convert
- Experimental Protocol
- Perform
- Generate codes
- Model
- Component
- Structure
- Values
- Cell Simulator
Concept

• Purpose
 – Efficient development and utilization of cell physiology models
• Flexibility
 – Functionally separated tools & formats
• Usability
 – Abstract & semantic representation
 – Intelligent assistance of user operation
• Compatibility
 – Convertible formats from/to CellML files
 – Use of CellML repository as a model library
Model Representation

- Three functionally separated formats
 - Component file
 - Mathematical declaration of a model component
 - Structure file
 - Anatomical hierarchy & composition of a model
 - Values file
 - Values of model variables

- Conversion between a set of three files and a CellML file possible
Developing Methods

• Cell Model Ontology: ontology on physiology models
 – For integrated processing of models

• PEPML: Physiology Experimental Protocol ML
 – Generic representation with ontology

• Simulation method of model equations
 – Analysis and optimization of calculation procedure with graph theory
Cell Model Ontology
Ontology for Physiology Models

- Existing ontologies: GO, BioPAX, etc.
 - Knowledge about substances
 - Anatomical classification
 - Genome information
 - Proteome information

- Cell Model Ontology (CMO)
 - Knowledge about cellular functions
 - Functional dependence
 - Relationships between substances and functions
Why is CMO needed?

• Cell physiology models refer to the same cellular component or function with different names;
 – (Physiological) function name vs. (Biochemical) substance name
 – Historical aliases & abbreviations

• Model components and variables have general functional relationships.

→ For integrated and semantic processing of physiology models, an ontology is needed.
Ontology

• Function: rapid component of delayed rectifier potassium current
 – Generator substance: hERG channel
 • hERG → Abbr. human ether-a-go-go related gene
 – Transports: potassium
 – Symbol: I_{Kr}

• Function: sarcolemmal calcium pump current
 – Generator substance: plasma membrane Ca-ATPase
 • Abbr. ← PMCA
 – Depends on: internal calcium concentration
 – …
Utilities using CMO

• Identification of CellML with the ontology
 – Assign an ID of CMO to each component and variable in CellML files.

• Cell structure editor
 – Edit the composition of a model with intelligent assistance

DOI: 10.2997/ipsjdc.2.726
Identification of CellML

• Append a cmo:id attribute to a CellML element
 <component name="fast_sodium_current" cmo:id="520">
 <variable name="Nai" cmo:id="211" .../>
 </component>

• Estimation method
 – Lexical keyword matching of the name
 – Analysis of inclusion relationships

• Results
 – Achieves about 80% correct estimations

• Future work
 – Analysis of anatomical locations & mathematical equations
Cell Structure Editor

• Graphical editor of a model structure with importing components from existing CellML files

• Intelligent assist using CMO
 – restricted allocation to the anatomical hierarchy
 – intelligent addition of required variables
 – automatic connection of components and variables
 – extraction of focused components
Current Status of CMO

• Specification:
 – not fixed yet

• Data:
 – Only several entities and limited attributes

• Users and Applications:
 – Finding

• Collaborators WANTED!
PEPML
Physiology Experimental Protocol Markup Language
Experimental Protocol

• All physiology experiments are performed according to experimental protocols

• Application of protocol

Model verifications & applications

Protocol A

Protocol B

Model

Model comparisons & tests

Protocol

Model A

Model B
PEPML

- A generic representation format of experimental protocols
 - Separate from models
 - Multiple protocols – single model
 - Independent of models by using CMO
 - Single protocol – multiple models
 - Procedural
 ↔ Declarative, CellML
Structure of PEPML

<protocol>
 <event id="event1">
 <condition>
 <and>
 <ge>
 <time />
 <literal value="10.0" units="ms" />
 </ge>
 <eq>
 <variable ref="cmo:x" /> = <variable ref="cmo:m" />
 </eq>
 </and>
 </condition>
 <action>
 <set_value>
 <variable ref="cmo:y" /> += <add>
 <literal value="1.0" />
 <sin><time /></sin>
 </add>
 </set_value>
 <add_value>
 <variable ref="cmo:z" />
 <literal value="4.0" />
 </add_value>
 </action>
 </event>
</protocol>

(t < 10.0) && (x == m)

y = 1.0 + sin(t)
z += 4.0
Simulation Method
Model Equations

• Formulation of physiology models
 – Differential Algebraic Equations
 • Differential equation: \(\frac{dy}{dt} = f(x) \)
 • Algebraic equation: \(x = g(p) \)
 – Include simultaneous algebraic equations:
 • Chemical & dynamical equilibrium
 • Conservation

• Generic simulation of model equations
 → analysis of calculation procedure
Analysis of Calculation Procedure

• Purpose:
 – Extraction of simultaneous equations
 – Determination of calculation sequence

• Method:
 – Structure analysis of equations with graph theory [Murota 1980]
 • Vertex: variable, Directed-edge: dependence
 – Adapting for physiology models

\[x = g(u, v) \]
Optimization of Equations

• General equation forms of models can be optimized

Original

\[
\begin{align*}
[\text{Ca}] + [\text{CaX}] &= [\text{Ca}]_r \\
[\text{X}] + [\text{CaX}] &= [\text{X}]_r \\
[\text{Ca}] \cdot [\text{X}] &= K_m [\text{CaX}]
\end{align*}
\]

Optimized

\[
\begin{align*}
[\text{Ca}] &= [\text{Ca}]_r - [\text{CaX}] \\
[\text{X}] &= [\text{X}]_r - [\text{CaX}] \\
0 &= [\text{Ca}] \cdot [\text{X}] - K_m [\text{CaX}]
\end{align*}
\]

Three dimensions ⇔ One dimensions

• Develop a method to search equation transformations on the graph of model equations
Requests for CellML
Software Independency

• Keep CellML software independent
 – Functions for particular software to be optional, supplemental and separable
 – Not interleave software dependents into CellML, but import CellML into software specific formats

• Because
 – CellML repository can be a model library for general use (including other utilities than simulator)
Declaration of Published Model

• Describe models as-is in public CellML files
 – Model description to be declarative (not procedural)
 – Without any transformations of equation for numerical calculation

 E.G.

 Original
 \[[B] \cdot [X] = K_m [BX] \]
 \[[B] + [BX] = [B], \quad [X] + [BX] = [X], \]

 Transformed
 \[[BX] = \left(-b + \sqrt{b^2 - 4c} \right) / 2 \]

• Because
 – Transformations cause semantic information lost
 • Transformed equation: no more than quadratic formula
 – Extensions / Imports get impossible
Summary

• simBio
• DynaBioS
• Cell Modelling Environment
 – Model Representation Formats
 – Cell Model Ontology
 – PEPML
 – Method to analyze calculation procedure
Thank you!