Software Tools & Techniques Cell/Biodynamics Simulation Project of Kyoto University

SHIMAYOSHI Takao

Project Introduction

Cell/Biodynamics Simulation Project

www.biosim.med.kyoto-u.ac.jp

- Leader: Prof. Noma
- Main Targets
 - Development of a comprehensive ventricular cell model: Kyoto Model
 - Membrane excitation, excitation contraction coupling, volume regulation, beta signalling, energy metabolism, etc.
 - Simulation of cardiac tissue & heart
 - Excitation propagation, mechanics, circulation dynamics, etc.

Software Packages

- simBio by Dr. Sarai
 Cell model simulator in use
- DynaBioS by Dr. Hori, Dr. Lu
 Platform for biosimulator in use
- Cell modelling environment

 Editor and simulator under development, to be the next-generation system

simBio

www.sim-bio.org

- Java package for biological simulation
 - Solver of ordinary differential equations
- Object-oriented model composition similar to CellML
 - Each model component is coded as a class Reactor (component in CelIML)
- COR can convert CellML files into simBio codes

DynaBioS

www.dynabios.org

Cell Modelling Environment

System Schema

CellML workshop 2007

Concept

- Purpose
 - Efficient development and utilization of cell physiology models
- Flexibility
 - Functionally separated tools & formats
- Usability
 - Abstract & semantic representation
 - Intelligent assistance of user operation
- Compatibility
 - Convertible formats from/to CellML files
 - Use of CellML repository as a model library

Model Representation

Three functionally separated formats

- Component file
 - Mathematical declaration of a model component
- Structure file
 - Anatomical hierarchy & composition of a model
- Values file
 - Values of model variables
- Conversion between a set of three files and a CelIML file possible

CellML

group

component

variable

initial_value

encapsulation

containment

connections

Developing Methods

- Cell Model Ontology: ontology on physiology models
 – For integrated processing of models
- PEPML:
 - Physiology Experimental Protocol ML
 - Generic representation with ontology
- Simulation method of model equations
 - Analysis and optimization of calculation procedure with graph theory

Cell Model Ontology

Ontology for Physiology Models

- Existing ontologies: GO, BioPAX, etc.
 - Knowledge about substances
 - Anatomical classification
 - Genome information
 - Proteome information
- Cell Model Ontology (CMO)
 - Knowledge about cellular functions
 - Functional dependence
 - Relationships between substances and functions

Why is CMO needed?

- Cell physiology models refer to the same cellular component or function with different names;
 - (Physiological) function name
 vs. (Biochemical) substance name
 - Historical aliases & abbreviations
- Model components and variables have general functional relationships.
- → For integrated and semantic processing of physiology models, an ontology is needed.

Ontology

- Function: rapid component of delayed rectifier potassium current
 - Generator substance: hERG channel
 - hERG \rightarrow Abbr. human ether-a-go-go related gene
 - Transports: potassium
 - Symbol: *I_{Kr}*
- Function: sarcolemmal calcium pump current
 - Generator substance: plasma membrane Ca-ATPase
 - Abbr. ← PMCA
 - Depends on: internal calcium concentration

. . .

Utilities using CMO

- Identification of CellML with the ontology
 - Assign an ID of CMO to each component and variable in CellML files.
- Cell structure editor
 - Edit the composition of a model with intelligent assistance

DOI: 10.2997/ipsjdc.2.726

Identification of CellML

- Append a cmo:id attribute to a CellML element
 - <component name="fast_sodium_current" cmo:id="520">
 <variable name="Nai" cmo:id="211" .../>

Estimation method

- Lexical keyword matching of the name
- Analysis of inclusion relationships
- Results
 - Achieves about 80% correct estimations
- Future work
 - Analysis of anatomical locations & mathematical equations

Cell Structure Editor

- Graphical editor of a model structure with importing components from existing CellML files
- Intelligent assist using CMO
 - restricted allocation to the anatomical hierarchy
 - intelligent addition of required variables
 - automatic connection of components and variables
 - extraction of focused components

Current Status of CMO

- Specification:
 - not fixed yet
- Data:
 - Only several entities and limited attributes
- Users and Applications:

– Finding

Collaborators WANTED!

PEPML Physiology Experimental Protocol Markup Language

Experimental Protocol

- All physiology experiments are performed according to experimental protocols
- Application of protocol

Model verifications & applications

Model comparisons & tests

PEPML

- A generic representation format of experimental protocols
 - Separate from models
 - Multiple protocols single model
 - Independent of models by using CMO
 - Single protocol multiple models
 - Procedural
 - \leftrightarrow Declarative, CellML

Structure of PEPML

```
<protocol>
 <event id="event1">
  <condition>
   <and>
    <qe>
     <time />
     <literal value="10.0"</pre>
                units="ms" />
    </qe>
    <eq>
     <variable ref="cmo:x" />
     <variable ref="cmo:m" />
    </eq>
   </and>
  </condition>
```

```
(t < 10.0) \&\& (x == m)
```

```
<action>
  <set_value>
   <variable ref="cmo:y" />
    <add>
     <literal value="1.0" .../>
     <sin><time /></sin>
   </add>
   </set value>
   <add value>
    <variable ref="cmo:z" />
    <literal value="4.0" .../>
  </add value>
  </action>
 </event>
</protocol>
```

```
y = 1.0 + sin(t)
z += 4.0
```

CellML workshop 2007

Simulation Method

Model Equations

- Formulation of physiology models
 Differential Algebraic Equations
 - Differential equation: dy/dt = f(x)
 - Algebraic equation: x = g(p)
 - Include simultaneous algebraic equations:
 - Chemical & dynamical equilibrium
 - Conservation
- Generic simulation of model equations
 → analysis of calculation procedure

Analysis of Calculation Procedure

• Purpose:

- Extraction of simultaneous equations
- Determination of calculation sequence
- Method:
 - Structure analysis of equations with graph theory [Murota 1980]
 - Vertex: variable, Directed-edge: dependence
 - Adapting for physiology models

Optimization of Equations

General equation forms of models can be optimized

Original

 $[Ca] + [CaX] = [Ca]_t$ $[X] + [CaX] = [X]_t$ $[Ca] \cdot [X] = K_m [CaX]$

 \Leftrightarrow

Three dimensions

Optimized

 $[Ca] = [Ca]_t - [CaX]$ $[X] = [X]_t - [CaX]$ $0 = [Ca] \cdot [X] - K_m [CaX]$

One dimensions

 Develop a method to search equation transformations on the graph of model equations

Requests for CellML

Software Independency

- Keep CellML software independent
 - Functions for particular software to be optional, supplemental and separable
 - Not interleave software dependents into CellML, But import CellML into software specific formats

• Because

 CellML repository can be a model library for general use (including other utilities than simulator)

Declaration of Published Model

- Describe models as-is in public CellML files
 - Model description to be declarative (not procedural)
 - Without any transformations of equation for numerical calculation
 - E.G. Original Transformed $\begin{bmatrix} B \end{bmatrix} \cdot \begin{bmatrix} X \end{bmatrix} = K_m \begin{bmatrix} BX \end{bmatrix}$ $\begin{bmatrix} B \end{bmatrix} + \begin{bmatrix} BX \end{bmatrix} = \begin{bmatrix} B \end{bmatrix}_t, \quad \begin{bmatrix} X \end{bmatrix} + \begin{bmatrix} BX \end{bmatrix} = \begin{bmatrix} X \end{bmatrix}_t$
- Because
 - Transformations cause semantic information lost
 - Transformed equation: no more than quadratic formula
 - Extensions / Imports get impossible

Summary

- simBio
- DynaBioS
- Cell Modelling Environment
 - Model Representation Formats
 - Cell Model Ontology
 - PEPML
 - Method to analyze calculation procedure

Thank you!