Software Tools & Techniques
Cell/Biodynamics Simulation Project of Kyoto University
SHIMAYOSHI Takao

Project Introduction

Cell/Biodynamics Simulation Project
www.biosim.med.kyoto-u.ac.jp

- Leader: Prof. Noma
- Main Targets
 - Development of a comprehensive ventricular cell model: Kyoto Model
 - Membrane excitation, excitation contraction coupling, volume regulation, beta signalling, energy metabolism, etc.
 - Simulation of cardiac tissue & heart
 - Excitation propagation, mechanics, circulation dynamics, etc.

Software Packages

- **simBio** by Dr. Sarai
 - Cell model simulator in use
- **DynaBioS** by Dr. Hori, Dr. Lu
 - Platform for biosimulator in use
- **Cell modelling environment**
 - Editor and simulator under development, to be the next-generation system

simBio
www.sim-bio.org

- Java package for biological simulation
 - Solver of ordinary differential equations
- Object-oriented model composition similar to CellML
 - Each model component is coded as a class Reactor (component in CellML)
- COR can convert CellML files into simBio codes

DynaBioS
www.dynabios.org

- Component-based architecture
- Event-driven architecture
- User-described system behaviour
- FEM solver
- Cell Simulator
- 3D Viewer

- LV motion simulator
Cell Modelling Environment

Concept

- **Purpose**
 - Efficient development and utilization of cell physiology models
- **Flexibility**
 - Functionally separated tools & formats
- **Usability**
 - Abstract & semantic representation
 - Intelligent assistance of user operation
- **Compatibility**
 - Convertible formats from/to CellML files
 - Use of CellML repository as a model library

Model Representation

- Three functionally separated formats
 - Component file
 - Mathematical declaration of a model component
 - Structure file
 - Anatomical hierarchy & composition of a model
 - Values file
 - Values of model variables
- Conversion between a set of three files and a CellML file possible

Developing Methods

- **Cell Model Ontology:**
 - ontology on physiology models
 - For integrated processing of models
- **PEPML:**
 - Physiology Experimental Protocol ML
 - Generic representation with ontology
- **Simulation method of model equations**
 - Analysis and optimization of calculation procedure with graph theory

Cell Model Ontology
Ontology for Physiology Models

- Existing ontologies: GO, BioPAX, etc.
 - Knowledge about substances
 - Anatomical classification
 - Genome information
 - Proteome information
 - Cell Model Ontology (CMO)
 - Knowledge about cellular functions
 - Functional dependence
 - Relationships between substances and functions

Why is CMO needed?

- Cell physiology models refer to the same cellular component or function with different names;
 - (Physiological) function name
 - (Biochemical) substance name
 - Historical aliases & abbreviations
- Model components and variables have general functional relationships.
 - For integrated and semantic processing of physiology models, an ontology is needed.

Ontology

- Function: rapid component of delayed rectifier potassium current
 - Generator substance: hERG channel
 - hERG → Abbr. human ether-a-go-go related gene
 - Transports: potassium
 - Symbol: I_{K}
- Function: sarcolemmal calcium pump current
 - Generator substance: plasma membrane Ca-ATPase
 - Abbr. → PMCA
 - Depends on: internal calcium concentration
 - ...

Utilities using CMO

- Identification of CellML with the ontology
 - Assign an ID of CMO to each component and variable in CellML files.
- Cell structure editor
 - Edit the composition of a model with intelligent assistance

DOI: 10.2997/ipsjdc.2.726

Identification of CellML

- Append a cmo:id attribute to a CellML element
 `<component name="fast_sodium_current" cmo:id="520">
 `<variable name="Nai" cmo:id="211" .../>
- Estimation method
 - Lexical keyword matching of the name
 - Analysis of inclusion relationships
- Results
 - Achieves about 80% correct estimations
- Future work
 - Analysis of anatomical locations & mathematical equations

Cell Structure Editor

- Graphical editor of a model structure with importing components from existing CellML files
- Intelligent assist using CMO
 - restricted allocation to the anatomical hierarchy
 - intelligent addition of required variables
 - automatic connection of components and variables
 - extraction of focused components
Current Status of CMO

- Specification:
 - not fixed yet
- Data:
 - Only several entities and limited attributes
- Users and Applications:
 - Finding
- Collaborators WANTED!

Experimental Protocol

- All physiology experiments are performed according to experimental protocols
- Application of protocol

PEPML

- Physiology Experimental Protocol Markup Language
- A generic representation format of experimental protocols
 - Separate from models
 - Multiple protocols – single model
 - Independent of models by using CMO
 - Single protocol – multiple models
 - Procedural ↔ Declarative, CellML

Structure of PEPML

```xml
<protocol>
  <event id="event1">
    <condition>
      <and>
        <ge>
          <time />
          <literal value="10.0" units="ms" />
        </ge>
        <eq>
          <variable ref="cmo:x" />
          <variable ref="cmo:m" />
        </eq>
      </and>
    </condition>
    <action>
      <set_value>
        <variable ref="cmo:y" />
        <add>
          <literal value="1.0" />
          <sin><time /></sin>
        </add>
      </set_value>
      <add_value>
        <variable ref="cmo:z" />
        <literal value="4.0" />
      </add_value>
    </action>
  </event>
</protocol>
```

Simulation Method

\[y = 1.0 + \sin(t) \]
\[z = 4.0 \]
Model Equations

- Formulation of physiology models
 - Differential Algebraic Equations
 - Differential equation: \(\frac{dy}{dt} = f(x) \)
 - Algebraic equation: \(x = g(p) \)
 - Include simultaneous algebraic equations:
 - Chemical & dynamical equilibrium
 - Conservation
- Generic simulation of model equations
 → analysis of calculation procedure

Analysis of Calculation Procedure

- Purpose:
 - Extraction of simultaneous equations
 - Determination of calculation sequence
- Method:
 - Structure analysis of equations with graph theory
 - [Murota 1980]
 - Vertex: variable, Directed-edge: dependence
 - Adapting for physiology models

Optimization of Equations

- General equation forms of models can be optimized

<table>
<thead>
<tr>
<th>Original</th>
<th>Optimized</th>
</tr>
</thead>
<tbody>
<tr>
<td>([Ca][CaX][-][Ca])</td>
<td>([Ca][-][CaX])</td>
</tr>
<tr>
<td>([X][X][-][CaX])</td>
<td>([X][-][CaX])</td>
</tr>
<tr>
<td>([Ca][X][K][CaX])</td>
<td>([Ca][X][-][K][CaX])</td>
</tr>
</tbody>
</table>

- Develop a method to search equation transformations on the graph of model equations

Requests for CellML

- Keep CellML software independent
 - Functions for particular software to be optional, supplemental and separable
 - Not interleave software dependents into CellML
 - But import CellML into software specific formats
- Because
 - CellML repository can be a model library for general use (including other utilities than simulator)

Declaration of Published Model

- Describe models as-is in public CellML files
 - Model description to be declarative (not procedural)
 - Without any transformations of equation for numerical calculation

E.G. Original
\([B][X][K][BX]\)
\([B][BX][B][X][BX][X] \)

Transformed
\([BX][-][b+\sqrt{b^2-4ac}]^2 \)

- Because
 - Transformations cause semantic information lost
 - Transformed equation: no more than quadratic formula
 - Extensions / Imports get impossible
Summary

- simBio
- DynaBioS
- Cell Modelling Environment
 - Model Representation Formats
 - Cell Model Ontology
 - PEPML
 - Method to analyze calculation procedure

Thank you!